

Built to last since 1948.

Macnaught Pty Ltd 614 South Ware BoulevardPh: +1813 628 5506Tampa Florida USA, 33619Email: info@macnaughtusa.com

www.macnaught.com

Macnaught Positive Displacement Flow Meters 2017 Product Catalogue MP209_2017

POSITIVE DISPLACEMENT FLOW METERS

ABOUT MACNAUGHT

Macnaught Pty Ltd is a privately owned manufacturing company based in Australia, established in 1948. Macnaught's experience in Positive Displacement Flow Meter technology extends back to 1964. Macnaught's mission is to always exceed industry standards with its products and services.

Macnaught continues to work closely with industry practitioners to deliver product improvements, new technologies and bespoke solutions. Macnaught has become a highly sought after manufacturer of precision oval gear meter technology. This has been achieved through decades of industry experience and innovation derived from its cutting edge in-house Research and Development facility with full ISO 9001 and 14001 accreditation. Macnaught also provide region specific accreditation as required.

Macnaught's Positive Displacement Flow Meters are suitable for a wide range of industrial applications including fuel and oil distribution, corrosive chemical or solvent measurement and high pressure applications to name a few.

Macnaught boasts a network of over 60 international distributors and a highly skilled global sales support network enabling access to its high performance and valued products simple, fast and efficient.

Decades of experience have resulted in simple, robust and highly accurate Positive Displacement Flow Meters. Specify Macnaught Positive Displacement Flow Meters with confidence for your flow measurement equipment requirements.

With international distribution capabilities, Macnaught's Americas office is located in Tampa, Florida. Our dedicated local team of technical experts and sales professionals look forward to serving your flow meter requirements.

CONTENTS

2

2

4

8

RANGE OVERVIEW	
METER SELECTION GUIDE	
OPERATING GUIDELINES	

MX-SERIES	S FLOW METERS		9
MX06	1/4" DIGITAL FLOW METERS	SUITABLE FOR FLOW RANGE 0.13-26GPH	12
MX09	1/4" DIGITAL FLOW METERS	SUITABLE FOR FLOW RANGE 4-132 GPH	14
MX12	1/2" DIGITAL FLOW METERS	SUITABLE FOR FLOW RANGE 0.5-8 GPM	16
MX19	34" DIGITAL FLOW METERS	SUITABLE FOR FLOW RANGE 0.8-21 GPM	18
MX25	1" DIGITAL FLOW METERS	SUITABLE FOR FLOW RANGE 1.6-32 GPM	20
MX40	1 1/2" DIGITAL FLOW METERS	SUITABLE FOR FLOW RANGE 2.6-66 GPM	22
MX50	2" DIGITAL FLOW METERS	SUITABLE FOR FLOW RANGE 4-130 GPM	24
MX75	3" DIGITAL FLOW METERS	SUITABLE FOR FLOW RANGE 5-194 GPM	26
MX100	4" DIGITAL FLOW METERS	SUITABLE FOR FLOW RANGE 31.7-317 GPM	28

M-SERIES FLOW METERS

M1	1/4" PULSE FLOW METERS	SUITABLE FOR FLOW RANGE 0.13-26 GPH	38
	1/4" HIGH PRESSURE FLOW METERS	SUITABLE FOR FLOW RANGE 0.13-26 GPH	40
M2	1/4" PULSE FLOW METERS	SUITABLE FOR FLOW RANGE 4-132 GPH	42
	1/4" HIGH PRESSURE FLOW METERS	SUITABLE FOR FLOW RANGE 4-132 GPH	44
M4	1/2" HIGH PRESSURE FLOW METERS	SUITABLE FOR FLOW RANGE 0.5-8GPM	46
	1/2" MECHANICAL FLOW METERS	SUITABLE FOR FLOW RANGE 0.5-8GPM	48
M7	1" PULSE FLOW METERS	SUITABLE FOR FLOW RANGE 0.8-21 GPM	50
M10	1" MECHANICAL FLOW METERS	SUITABLE FOR FLOW RANGE 1.6-32 GPM	52
M40	1 1/2" MECHANICAL FLOW METERS	SUITABLE FOR FLOW RANGE 2.6-66 GPM	54
M50	2" MECHANICAL FLOW METERS	SUITABLE FOR FLOW RANGE 4-130 GPM	56
M80	3" MECHANICAL FLOW METERS	SUITABLE FOR FLOW RANGE 5-194 GPM	58
M100	4" MECHANICAL FLOW METERS	SUITABLE FOR FLOW RANGE 31.7-317 GPM	60

ACCESSORIES

63

31

APPENDICES		
APPENDIX A	FLOW METER ACCURACY AND PRESSURE LOSSES	72
APPENDIX B	ACCESSORY DIMENSIONAL DATA	74
APPENDIX C	VISCOSITY FACTOR	77
APPENDIX D	WARRANTIES & CERTIFICATIONS	78
APPENDIX E	CHEMICAL COMPATIBILITY GUIDE	79

INTRODUCTION

RANGE OVERVIEW

Macnaught's Positive Displacement Flow Meters are suitable for a wide range of industrial applications including fuel and oil distribution, corrosive chemical, solvent measurement and high pressure applications to name a few.

Macnaught offers Positive Displacement Flow Meters featuring Oval Gear technology. The measuring principle includes two high precision toothed oval gears, which are driven by the flow of the medium and mesh with each other: in presence of a flow, defined volumes of fluid are transported through the meter for each rotation of oval gears pair. As the flow rate increases, so does the rotational speed of the rotors. The number of gear rotations is a measure of the amount of fluid that has passed through the meter; each rotation is detected by a sensor and the volume is calculated using a conversion factor (K factor).

Figure 1: Macnaught Positive Displacement Flow Meter operation.

A key distinction of positive displacement flow meters is that they offer direct measurement of the volumetric flow rate. Positive displacement flow meters are frequently specified as they offer high accuracy and repeatability. They readily provide measurement accuracy within +/-0.5% of the true value.

Additionally, positive displacement flow meters require no power to drive the gear operation with no special fluid conditioning (e.g. straight lengths of pipe) and are capable of handling high pressure, large flow variations and plant equipment vibration due to their robust design.

Advantages:

- High accuracy and repeatability
- Suitable for viscous fluids
- Cost-effective
- Accuracy unaffected by changes in viscosity
- Requires minimal maintenance
- Ease of installation
- Exceptional turn-down ratio

Precision engineering and manufacturing methods are used by Macnaught using cutting edge CNC machining technology and mill certified materials to deliver highly repeatable accuracy and durability. All critical components are machined in-house with astute quality control monitoring the production process continuously.*

NOTE: This catalogue is intended to provide general guidance on Macnaught's Positive Displacement Flow Meters. In order to select the most appropriate meter for your needs, please seek expert advice which is available free-of-charge from Macnaught's Technical Support Team.

3

macnaught.com

77 macnaught

As a result of over 50 years experience with Positive Displacement Flow Meter technology, Macnaught offers two comprehensive ranges that cater for the ever changing market needs. The latest innovation with the **MX-SERIES** range to the original **M-SERIES** range, Macnaught flow meters are designed to insist upon durability, reliability and excellence.

The **MX-SERIES** is the latest innovation featuring:

- High precision billet construction for enhanced material integrity and process reliability
- Programmable digital display and Pulse output options
- Unique bayonet assembly for added versatility and flexibility

- Established design and cast construction for proven performance
- Mechanical and pulse output options

Figure 2: Summary of the key features of Macnaught's Positive Displacement Flow Meters

	MX-SERIES	M-SERIES
Meter Body	Billet construction* Stainless Steel Aluminium	Cast construction** Stainless Steel Aluminium PPS
Rotor	PPS (Hastelloy o Aluminium (Ca 316 Stainless Stee High Viscosity Rotors (Stainles	r Stainless Steel) Irbon Bushing) I (Carbon Bushing) ss Steel with Carbon Bushing)
Output Mechanical	×	Standard Mechanical Register Heavy Duty Mechanical Register
Output Electrical	Output Intrinsically Safe Pulse Intrinsically Safe Pulse Standard Pulse High Temp. Pulseerature Pulse 4 - 20 mA output	
Digital Display	Full programmable Meter Mount Digital Displays (PR & ER) Remote-mountable Digital Displays (PR & ER)	Full programmable Meter Mount Digital Displays (DR - CR025 only) Remote-mount Digital Display (PR & ER)

*Billet construction across the MX meters up to 2"

**M-SERIES all cast with the exception of the MH High Pressure Flow Meters (these are of billet construction)

INTRODUCTION

METER SELECTION GUIDE

Correct specification of the appropriate meter is necessary to achieve desired accuracy and suitable data output, as well as to ensure safety in each application. While for most applications, the specification of the appropriate meter will be straightforward, using the specification process outlined below, for some applications there may be additional technical considerations which need to be assessed on a case-by-case basis. In all circumstances we recommend that you consult with Macnaught's Technical Support Team to select the most appropriate meter for your needs

The following steps are provided as general guidelines to assist with correct meter specification. However, to ensure accuracy of specification in relation to your application, we recommend seeking expert advice before making the final selection of the appropriate meter. Please note that Macnaught's Technical Support Team is available free-of-charge to assist in the specification and identification of a suitable meter.

Flow Meter Size

Macnaught Positive Displacement Flow Meters are available in a range of sizes that are engineered to provide high accuracy across a wide turn down ratio. Figure 3 assists in interpreting your process flow rate, which is an important determinant to the accuracy of your meter. The size of meter should be selected for maximum coverage for your operating flow rates. As shown in Figure 4, the accuracy of the meter is optimal near the mid-range of the meter flow range. In some instances the required flow rates can fall across two meter options, e.g. if the required flow rate is 1 GPM both the MX09 & the MX12 are suitable, in such cases it is recommended to select the meter where the flow range is within the upper 50% of the meter's flow range limits, i.e. the MX09 is preferred.

Figure 3: Macnaught Positive Displacement Flow Meters flow rate range selection chart

NOTE: The above graphs are based on generic industry-sourced data. The graphs are intended to be used for illustrative purposes only and may not be directly applicable to your specific applications. Please seek expert advice from Macnaught's Technical Support Team before final selection. IMPORTANT: Do not use the above data for product selection.

Identifying the correct meter size for the operating flow rates will ensure the longevity of the meter and deliver optimal accuracy during its operation. For instances where operation is necessary outside the designated mid flow range of the meter, it is recommended that an optional 'multi-point' calibration is performed which will help ensure maximum accuracy is achieved. We recommend consulting Macnaught's Technical Support Team before final selection.

Chemical Compatibility

To determine the most appropriate materials combination for each application it is essential that the wetted components of the meter assembly are confirmed for chemical compatibility. Macnaught meters are available in standard materials configurations, as shown on the quick reference table below (figure 5): common fluid types are listed and the recommended materials combination for each of them is indicated. For a more comprehensive chemical compatibility guide, please refer to Appendix E on page 79.

The chemical compatibility guides referred to above are intended to provide general guidance on chemical compatibility. It is highly recommended that the data is checked on a case-by-case basis, as individual process variations in chemical concentration and temperatures from those of the reference data can influence compatibility. We advise seeking expert advice from Macnaught's Technical Support Team to confirm the materials selection.

BODY	PPS	AL	SS	AL
ROTOR	PPS	PPS	PPS PPS/SS	
SEALS	FFKM	FKM	FEP	FEP
Avgas - Jet Fuel	✓	✓	 ✓ 	 ✓
Diesel Fuel	✓	✓	✓	✓
Ethylene Glycol	✓	✓	✓	×
Gasoline, Unleaded	✓	✓	×	×
Kerosene	✓	✓	 ✓ 	×
Adblue®	✓	-	-	-
Ammonia, anhydrous	-	-	-	✓
Citric Acid	✓	-	×	-
Methyl Ethyl Ketone	✓	×	×	×
Acetone	✓	-	×	✓
Ethanol	✓	×	×	×
Hexane	✓	 ✓ 	×	✓
Methanol	✓	-	×	×
Toluene	-	-	-	✓
Phosphoric Acid	✓	-	-	-
Potassium Hydroxide	✓	-	✓	-
Sodium Hydroxide	✓	-	-	-
Sulphuric Acid	✓	-	-	-
Water	✓	-	 ✓ 	-

Figure 5: Quick reference chemical compatability guide*

*Refer to Appendix E - Chemical Compatibility Guide for general guidance on suitability

NOTE: This chart is intended to provide general guidance on chemical compatibility and should not be used for product selection. The chart is based on industry data and may not be directly applicable to your specific applications. Macnaught does not accept liability for chemical compatibility outside of the accuracy of the wetted component list. Please consult Macnaught's Technical Support Team before final selection.

5

Temperature & Pressure Rating

All Macnaught flow meters are designed to be completely safe under normal operating conditions. However, to ensure user's safety, it is very important to select a flow meter that will operate within the process pressure and temperature conditions at all times.

Allowances should be made for any potential 'spikes' in pressure (e.g. as a result of sudden valve closures or as the pump initially starts). If the system pressure is expected to reach the meters maximum rating it may be necessary to incorporate a pressure relief valve into the system. Macnaught's Technical Support Team is available to provide advice in this regard.

There are a number of factors which influence the pressure and temperature ratings of a flow meter during operation:

- Presence of flanged ports causes a reduction of the pressure rating
- Other modifications to the materials properties

Temperature rating:

- Operational parameters such as the limitations of an attached LCD register and batteries
- Coefficient of thermal expansion or
- Other modifications to the materials properties,

When factors combine, the individual effects could amplify and pose a safety risk. We therefore recommend seeking expert advice from Macnaught's Technical Support Team before final selection of the appropriate meter.

Rotor Type

While Macnaught Positive Displacement Flow Meters are capable of processing a very wide range of fluid viscosities, the viscosity of fluids still need to be considered to aid the selection process. This value should always be taken at the applications operating temperature and flow rate. Note that typical fluid technical data sheets are not usually stated at operating conditions, so further research may be required to determine this information.

In cases where the fluid is non-Newtonian, additional allowances may be required to compensate for changes to viscosity between static and dynamic situations.

The higher the fluids viscosity the greater the pressure drop it will cause. As shown in Figure 7, the maximum flow rate will need to be reduced as the viscosity increases. Please contact Macnaught if your require further assistance. Alternatively, as shown in Figure 6, Macnaught offers High Viscosity (HV) rotors that have been modified to alleviate this pressure drop and still offer extended flow ranges. As a general rule if the viscosity is >1000cP it is recommended to use HV rotors, but it is also important to look for notes on minimum viscosity as this can also affect the meters minimum flow rate.

INTRODUCTION

Maximum Flow Rate Range

Figure 7: Impact of viscosity on pressure loss for a range of flow rates

Note: For viscosities greater than 1000cP High Viscosity rotors are required

NOTE: The above graphs are based on generic industry-sourced data. The graphs are intended to be used for illustrative purposes only and may not be directly applicable to your specific applications. Please seek expert advice from Macnaught's Technical Support Team before final selection.

IMPORTANT: Do not use the above data for product selection.

OPERATING GUIDELINES

While oval gear flow meters provide exceptional accuracy, reliability and a cost effective solution, there are some considerations for their usage. For example they should not be used to measure fluids with particles or air pockets in them and adequate filtration needs to be installed upstream of the meter. Inside the

meter are moving components, so as good practice a routine inspection may be required. The frequency of the inspection should be based on the operating conditions; these will include the maximum flow rate, viscosity and the fluids lubricating properties. If the meter is used with a lubricating fluid, such as oil, and is well within the maximum flow range, then the meter will operate of many years maintenance free.

Installation Guidelines

- 1. It is recommended that when setting up pipe work for meter installations a bypass line be included in the design. This provides the facility for a meter to be removed for maintenance without interrupting production
- 2. Use thread sealant on all pipe threads.
- **3.** For pump applications ensure pipe work has the appropriate working pressure rating to match the pressure output of the pump. Check specified Meter Technical Data section for further details.
- **4.** Install a wire mesh strainer, Y or basket type (refer to pg.68 for Y strainer options) as close as possible to the inlet side of the meter.
- **5.** For M-series meters ensure that the meter is installed so that the flow of the liquid is in the direction of the arrows (if applicable) embossed on the meter body.
- 6. The meter can be installed in any orientation as long as the meter shafts are in a horizontal plane. (Refer to Figure 9 below for correct installation). The register assembly may be orientated to suit the individual. Note: Incorrect installation can cause premature wear of meter components.
- 7. Do not over-tighten meter connections. It is important that after initial installation you fill the line slowly, high speed air purge could cause damage to the rotors.
- 8. Test the system for leaks.
- **9.** Check the strainer for swarf or foreign material after the first 1 hour of operation. Check the strainer for swarf or foreign material periodically, particularly if the flow rate decrease .

MX-SERIES FLOW METERS

MX-SERIES FLOW METERS

DIGITAL FLOW METERS

The Digital Flow Meter range are the latest innovation from Macnaught. They feature billet construction* offering optimal operational reliability and accuracy. Supplied with an individual Test Report, these meters are also marked with the actual K factor from calibration testing for an accuracy of +/-0.5%. Their construction is modular allowing for simple in situ maintenance and system changes.

EXPLODED DIAGRAM

PRODUCT IDENTIFICATION SYSTEM

MX06

Ε

MX06P-1SE

MX PORT SIZE								
06	09	12	19	25	40	50	75	100
1/4"	1/4"	1/2"	3/4"	1"	1 1/2"	2"	3"	4"

	MATERIALS OF CONSTRUCTION						
	CATEGORY (METER/ROTOR/SEAL)	MODELS					
F	AL/PPS/FKM	MX06-50					
	AL/AL/FKM	MX75-100					
Р	SS/PPS/FEP	MX06-50					
S	AL/SS/FEP	MX06-25					
	AL/AL/FEP	MX40-100					

	PORT CONNECTION	MODEL
1	G	
2	NPT	All Wodels
3	ANSI 150	
4	JIS 10K	MX25-100
5	DIN PN16	

	ROTOR TYPE	MODELS
S	Standard	As per category
т	High Temp. Pulse	MX06P - MX50P
v	High Viscosity	S and P category

	OUTPUT TYPE	MODELS
х	No Output	All Models
Α	Standard Pulse	All Models
В	Ex approved (Ex ia)	Consult Macnaught Technical regarding availability
D	PR (LCD 12mm display)	All Models
E	PRA (LCD 12mm display)	All Models
F	ER (LCD 17mm display)	All Models*
G	ERA (LCD 17mm display)	All Models*
н	ERB (LCD 17mm display)	All Models*
N	Ex Approved (Ex ia NAMUR)	Consult Macnaught Technical regarding availability
т	High Temperature	All Models
I	Reed/Reed	
J	Hall/Hall	Consult Macnaught Technical regarding availability
К	High Resolution (omnipolar)	

MX-SERIES FLOW METERS

macnaught.com 11

MX06 - 1/4" DIGITAL FLOW METERS

SUITABLE FOR FLOW RANGE 0.13-26GPH

MX06P-1SE Stainless steel body with LCD register

Output variations:

B - Ex approved (Ex ia) Intrinsically Safe - NPN N - Ex approved (Ex ia)

Intrinsically Safe - NAMUR **T - High Temp. Pulse** Max temp- 150°C

D - PR LCD Display (12mm)

E - PRA LCD Display (12mm) with outputs

F - ER LCD Display (17mm) G- ERA

LCD Display (17mm) H- ERB

LCD Display (17mm) Batch controller

A - Standard Pulse Reel/Hall Effect

I - Standard Pulse Reel/Reed Effect

J - Standard Pulse Hall/Hall Effect

K - High Resolution Hall NPN

The MX06 $\frac{1}{4}$ " Digital Flow Meters are suitable for flows between 0.13-26GPH. The $\frac{1}{4}$ " Digital Flow Meters have an accuracy of +/- 0.5% and provides exceptional levels of reliability and durability.

SPECIFICATIONS

	MX06F		МХ	06S	MX06P	
Materials of Construction Meter Body	Aluminium (6061)		Aluminium (6061)		Stainless Steel (316)	
Rotor	PPS		Stainless Steel (316)		PPS Stainless Steel (316)	
Seals	Fluorocarbon (FKM)		PTFE Encapsulated (F	EP)	PTFE Encapsulated	(FEP)
Design Specifications Process Connections	1/4" G 1/4" NPT		1⁄4" G 1⁄4 " NPT		14" G 14" NPT	
Technical Specifications Flow rate	<5cP 2-100L/hr 0.5-26USG/hr	>5cP 0.5-100L/hr 0.13-26USG/hr	<5cP 2-100L/hr 0.5-26USG/hr	>5cP 0.5-100L/hr 0.13-26USG/hr	<5cP 2-100L/hr 0.5-26USG/hr	>5cP 0.5-100L/hr 0.13-26USG/hr
Non-lubricating fluids	6-100L/hr 1.58-26USG/hr		6-100L/hr 1.58-26USG/hr		6-100L/hr 1.58-26USG/hr	
Operating Temperature Range*	-40 - 80°C -40 - 176°F		-40 - 120°C -40 - 248°F		-40 - 80°C (150°C w -40 - 176°F (302°F v	ith high temp. rotors) vith high temp. rotors)
Max. Operating Pressure	1000psi 69bar		1000psi 69bar		1000psi 69bar	
Accuracy	+/- 0.5%		+/- 0.5%		+/- 0.5%	
Repeatability	+/- 0.03%		+/- 0.03%		+/- 0.03%	
Nominal K-Factor	264.172 Pulses/Gallo	n	264.172 Pulses/Gallo	n	264.172 Pulses/Gallon	

*Temperature based on standard pulse output - subject to change dependant on rotor and output type, contact Macnaught technical support for further investigations

	DESCRIPTION	SWITCH TYPE	OUTPUT TYPE	MX06F	MX06S	MX06P
х	No Output	-	No Output	•	•	•
А	Standard Pulse	Reed / Hall (NPN)	Pulse (1m flying lead)	•	•	•
В	Ex approved (Ex ia)	Hall (NPN)	Pulse (2m DIN cable)	-	•	•
D	PR (LCD 12mm display)	-	Display 12mm	•	•	•
E	PRA (LCD 12mm display)	-	Display 12mm, 4-20mA output, Pulse	•	•	•
F	ER (LCD 17mm display)	-	Display 17mm	•	•	•
G	ERA (LCD 17mm display)	-	Display 17mm, 4-20mA output, Pulse	•	•	•
н	ERB (LCD 17mm display)	-	Display 17mm + Batch Control	•	•	•
Ν	Ex Approved (Ex ia NAMUR)	NAMUR	Pulse (2m DIN cable)	-	•	•
т	High Temp. Pulseerature	Hall (NPN)	Pulse	×	S	S
I	Reed/Reed	Reed/Reed	Pulse (1m flying lead)	-	-	-
1	Hall/Hall	Hall/Hall	Pulse (1m flying lead)	-	-	-
К	High Resolution (omnipolar)	Hall (NPN)	Pulse (1m flying lead)	-	-	-
Available	× Not Available S Or	nly with stainless steel rot	tors – Consult Macnaught Technic	cal regarding ava	ilability	

.....

Ø99mm

<u>Ø16m</u>m

0

DIMENSIONS

Ø74mm

25.4mm (1") A/F

Ô

Ø19mm

Ø161mm

MX09 - 1/4" DIGITAL FLOW METERS

SUITABLE FOR FLOW RANGE 4-132 GPH

MX09P-1SE Stainless steel body with LCD register Output variations:

B - Ex approved (Ex ia) Intrinsically Safe - NPN N - Ex approved (Ex ia)

Intrinsically Safe - NAMUR **T - High Temp. Pulse**

D - PR LCD Display (12mm) **E - PRA**

LCD Display (12mm) with outputs

F - ER LCD Display (17mm) G- ERA

LCD Display (17mm) H- ERB

LCD Display (17mm) Batch controller

A - Standard Pulse Reel/Hall Effect

I - Standard Pulse Reel/Reed Effect

J - Standard Pulse Hall/Hall Effect

K - High Resolution Hall NPN

The MX09 ¹/₄" Digital Flow Meters are suitable for flows between 4-132 GPH. The ¹/₄" Digital Flow Meters have an accuracy of +/- 0.5% and provides exceptional levels of reliability and durability.

SPECIFICATIONS

	MX	(09 F	MX09S		M>	(09P
Materials of Construction Meter Body	Aluminium (6061)		Aluminium (6061)		Stainless Steel (316)	
Rotor	PPS		Stainless Steel (316)		PPS Stainless Steel (316)	
Seals	Fluorocarbon (FKM)		PTFE encapsulated (F	EP)	PTFE encapsulated ((FEP)
Design Specifications Process Connections	Threaded ¼ª G ¼* NPT		Threaded ¼" G ¼" NPT		Threaded ¼" G ¼" NPT	
Technical Specifications Flow rate	<5cP 25-500L/hr 6.6-132USG/hr	>5cP 15-500L/hr 4-132USG/hr	<5cP 25-500L/hr 6.6-132USG/hr	> 5cP 15-500L/hr 4-132USG/hr	<5cP 25-500L/hr 6.6-132USG/hr	> 5cP 15-500L/hr 4-132USG/hr
Operating Temperature Range*	-40 - 80°C -40 - 176°F		-40 - 120°C -40 - 248°F		-40 - 80°C (150°C with high temp. rotors) -40 - 176°F (302°F with high temp. rotors)	
Max. Operating Pressure	1000psi 69bar		1000psi 69bar		1000psi 69bar	
Accuracy	+/- 0.5%		+/- 0.5%		+/- 0.5%	
Repeatability	+/- 0.03%		+/- 0.03%		+/- 0.03%	
Nominal K-Factor	105.669 Pulses/Gall	on	105.669 Pulses/Gallo	on	105.669 Pulses/Gallon	

*Temperature based on standard pulse output - subject to change dependant on rotor and output type, contact Macnaught technical support for further investigations

	DESCRIPTION	SWITCH TYPE	OUTPUT TYPE	MX09F	MX09S	MX09P
х	No Output	-	No Output	•	•	•
А	Standard Pulse	Reed /Hall (NPN)	Pulse (1m flying lead)	•	•	•
В	Ex approved (Ex ia)	Hall (NPN)	Pulse (2m DIN cable)	-	•	•
D	PR (LCD 12mm display)	-	Display 12mm	•	•	•
E	PRA (LCD 12mm display)	-	Display 12mm, 4-20mA output, Pulse	•	•	•
F	ER (LCD 17mm display)	-	Display 17mm	•	•	•
G	ERA (LCD 17mm display)	-	Display 17mm, 4-20mA output, Pulse	•	•	•
н	ERB (LCD 17mm display)	-	Display 17mm + Batch Control	•	•	•
N	Ex Approved (Ex ia NAMUR)	NAMUR	Pulse (2m DIN cable)	-	•	•
т	High Temp. Pulseerature	Hall (NPN)	Pulse	×	S	S
I	Reed/Reed	Reed/Reed	Pulse (1m flying lead)	-	-	-
1	Hall/Hall	Hall/Hall	Pulse (1m flying lead)	-	-	-
К	High Resolution (omnipolar)	Hall (NPN)	Pulse (1m flying lead)	-	-	-
Available	× Not Available S Or	nly with stainless steel ro	tors – Consult Macnaught Technic	cal regarding ava	ilability	

.....

DIMENSIONS

<

PULSER AND DISPLAY HEIGHT - A

<u>25.4mm (1")</u> A/F

OUTPUT A PULSER - Standard

OUTPUT B PULSER - Exia

<u>Ø19</u>mm

0

OUTPUT N PULSER - Exia

OUTPUT T PULSER - High Temp.

OUTPUT D,E DISPLAY - LCD 12mm

OUTPUT F,G,H DISPLAY - LCD 17mm

Ø74mm

<u>Ø16m</u>m

Ø99mm

.....

MX12 - 1/2" DIGITAL FLOW METERS

SUITABLE FOR FLOW RANGE 0.5-8 GPM

MX12P-1SE Stainless steel body with LCD register Output variations:

B - Ex approved (Ex ia) Intrinsically Safe - NPN N - Ex approved (Ex ia)

Intrinsically Safe - NAMUR T - High Temp. Pulse

D - PR LCD Display (12mm) **E - PRA**

LCD Display (12mm) with outputs

F - ER LCD Display (17mm) G- ERA

LCD Display (17mm) H- ERB

LCD Display (17mm) Batch controller

A - Standard Pulse Reel/Hall Effect

I - Standard Pulse Reel/Reed Effect

J - Standard Pulse Hall/Hall Effect

K - High Resolution Hall NPN

The MX12 $\frac{1}{2}$ " Digital Flow Meters are suitable for flows between 0.5-8 GPM. The $\frac{1}{2}$ " Digital Flow Meters have an accuracy of +/- 0.5% and provides exceptional levels of reliability and durability.

SPECIFICATIONS

	МХ	(12 F	МХ	MX12S		(12P
Materials of Construction Meter Body	Aluminium (6061)		Aluminium (6061)		Stainless Steel (316)	
Rotor	PPS		Stainless Steel (316)		PPS Stainless Steel (316)	
Seals	Fluorocarbon (FKM)		PTFE encapsulated (FEP)	PTFE encapsulated	(FEP)
Design Specifications Process Connections	Threaded ½" G ½" NPT		Threaded ½" G ½" NPT		Threaded ½" G ½" NPT	
Technical Specifications Flow rate	<5cP 3-25L/min 0.6-6.6USG/min	>5cP 2-30L/min 0.5-8USG/min	<5cP 3-25L/min 0.6-6.6USG/min	> 5cP 2-30L/min 0.5-8USG/min	<5cP 3-25L/min 0.6-6.6USG/min	>5cP 2-30L/min 0.5-8USG/min
Operating Temperature Range*	-40 - 80°C -40 - 176°F		-40 - 120°C -40 - 248°F		-40 - 80°C (150°C with high temp. rotors) -40 - 176°F (302°F with high temp. rotors)	
Max. Operating Pressure	2000 psi 138 Bar		2000 psi 138 Bar		2000 psi 138 Bar	
Accuracy	+/- 0.5%		+/- 0.5%		+/- 0.5%	
Repeatability	+/- 0.03%		+/- 0.03%		+/- 0.03%	
Nominal K-Factor	29.587 Pulses/Gallor	1	29.587 Pulses/Gallor	n	29.587 Pulses/Gallon	

*Temperature based on standard pulse output - subject to change dependant on rotor and output type, contact Macnaught technical support for further investigations

	DESCRIPTION	SWITCH TYPE	OUTPUT TYPE	MX12F	MX12S	MX12P
х	No Output	-	No Output	•	•	•
Α	Standard Pulse	Reed /Hall (NPN)	Pulse (1m flying lead)	•	•	•
В	Ex approved (Ex ia)	Hall (NPN)	Pulse (2m DIN cable)	-	•	•
D	PR (LCD 12mm display)	-	Display 12mm	•	•	•
E	PRA (LCD 12mm display)	-	Display 12mm, 4-20mA output, Pulse	•	•	•
F	ER (LCD 17mm display)	-	Display 17mm	•	•	•
G	ERA (LCD 17mm display)	-	Display 17mm, 4-20mA output, Pulse	•	•	•
н	ERB (LCD 17mm display)	-	Display 17mm + Batch Control	•	•	•
Ν	Ex Approved (Ex ia NAMUR)	NAMUR	Pulse (2m DIN cable)	-	•	•
т	High Temp. Pulseerature	Hall (NPN)	Pulse	×	S	S
1	Reed/Reed	Reed/Reed	Pulse (1m flying lead)	-	-	-
1	Hall/Hall	Hall/Hall	Pulse (1m flying lead)	-	-	-
К	High Resolution (omnipolar)	Hall (NPN)	Pulse (1m flying lead)	-	-	-
Available	× Not Available S Or	nly with stainless steel ro	tors – Consult Macnaught Technic	cal regarding ava	ilability	

.....

DIMENSIONS

PULSER AND DISPLAY HEIGHT - A

25.4mm (1") A/F

OUTPUT A PULSER - Standard

OUTPUT B PULSER - Exia

OUTPUT N PULSER - Exia

OUTPUT T PULSER - High Temp.

OUTPUT D,E DISPLAY - LCD 12mm

OUTPUT F,G,H DISPLAY - LCD 17mm

Г	
36mm	
_	

Ø19mm

Ø16mm

0

Ø99mm

MX19 - 3/4" DIGITAL FLOW METERS

SUITABLE FOR FLOW RANGE 0.8-21 GPM

MX19P-1SE Stainless steel body with LCD register

Output variations:

B - Ex approved (Ex ia) Intrinsically Safe - NPN N - Ex approved (Ex ia)

Intrinsically Safe - NAMUR **T - High Temp. Pulse** Max temp- 150°C

D - PR LCD Display (12mm) **E - PRA**

LCD Display (12mm) with outputs

F - ER LCD Display (17mm) G- ERA

LCD Display (17mm) H- ERB

LCD Display (17mm) Batch controller

A - Standard Pulse Reel/Hall Effect

I - Standard Pulse Reel/Reed Effect

J - Standard Pulse Hall/Hall Effect

K - High Resolution Hall NPN

The MX19 ³/₄" Digital Flow Meters are suitable for flows between 0.8-21 GPM. The ³/₄" Digital Flow Meters have an accuracy of +/- 0.5% and provides exceptional levels of reliability and durability.

SPECIFICATIONS

	МХ	(19 F	МХ	MX19S		(19P
Materials of Construction Meter Body	Aluminium (6061)		Aluminium (6061)		Stainless Steel (316)	
Rotor	PPS		Stainless Steel (316)		PPS Stainless Steel (316)	
Seals	Fluorocarbon (FKM)		PTFE encapsulated (F	EP)	PTFE encapsulated (FEP)
Design Specifications Process Connections	Threaded %/* G %/* NPT		Threaded ¾" G ¾" NPT		Threaded ⁸ 4" G ⁹ 4" NPT	
Technical Specifications Flow rate	<5cP 8-70L/min 2-18.5USG/min	>5cP 3-80L/min 0.8-21USG/min	<5cP 8-70L/min 2-18.5USG/min	> 5cP 3-80L/min 0.8-21USG/min	<5cP 8-70L/min 2-18.5USG/min	>5cP 3-80L/min 0.8-21USG/min
Operating Temperature Range*	-40 - 80°C -40 - 176°F		-40 - 120°C -40 - 248°F		-40 - 80°C (150°C with high temp. rotors) -40 - 176°F (302°F with high temp. rotors)	
Max. Operating Pressure	2000 psi 138 Bar		2000 psi 138 Bar		2000 psi 138 Bar	
Accuracy	+/- 0.5%		+/- 0.5%		+/- 0.5%	
Repeatability	+/- 0.03%		+/- 0.03%		+/- 0.03%	
Nominal K-Factor	13.737 Pulses/Gallon		13.737 Pulses/Gallon		13.737 Pulses/Gallon	

*Temperature based on standard pulse output - subject to change dependant on rotor and output type, contact Macnaught technical support for further investigations

	DESCRIPTION	SWITCH TYPE	OUTPUT TYPE	MX19F	MX19S	MX19P
х	No Output	-	No Output	•	•	•
А	Standard Pulse	Reed /Hall (NPN)	Pulse (1m flying lead)	•	•	•
в	Ex approved (Ex ia)	Hall (NPN)	Pulse (2m DIN cable)	-	•	•
D	PR (LCD 12mm display)	-	Display 12mm	•	•	•
E	PRA (LCD 12mm display)	-	Display 12mm, 4-20mA output, Pulse	•	•	•
F	ER (LCD 17mm display)	-	Display 17mm	•	•	•
G	ERA (LCD 17mm display)	-	Display 17mm, 4-20mA output, Pulse	•	•	•
н	ERB (LCD 17mm display)	-	Display 17mm + Batch Control	•	•	•
Ν	Ex Approved (Ex ia NAMUR)	NAMUR	Pulse (2m DIN cable)	-	•	•
т	High Temp. Pulseerature	Hall (NPN)	Pulse	×	S	S
I	Reed/Reed	Reed/Reed	Pulse (1m flying lead)	-	-	-
J	Hall/Hall	Hall/Hall	Pulse (1m flying lead)	-	-	-
к	High Resolution (omnipolar)	Hall (NPN)	Pulse (1m flying lead)	-	-	-
Available	× Not Available S Or	nly with stainless steel ro	tors – Consult Macnaught Technic	cal regarding ava	ilability	

DIMENSIONS

PULSER AND DISPLAY HEIGHT - A

OUTPUT A PULSER - Standard

OUTPUT B PULSER - Exia

Ø19mm

OUTPUT N PULSER - Exia

OUTPUT T PULSER - High Temp.

OUTPUT D,E DISPLAY - LCD 12mm

qiiiiim

10mr

163mm

OUTPUT F,G,H DISPLAY - LCD 17mm

⊕⊕⊕

Ø74mm

Ô

MX25 – 1" DIGITAL FLOW METERS

SUITABLE FOR FLOW RANGE 1.6-32 GPM

MX25P-1SE Stainless steel body with LCD register

Output variations:

B - Ex approved (Ex ia) Intrinsically Safe - NPN N - Ex approved (Ex ia)

Intrinsically Safe - NAMUR **T - High Temp. Pulse**

D - PR LCD Display (12mm) **E - PRA**

LCD Display (12mm) with outputs

F - ER LCD Display (17mm) G- ERA

LCD Display (17mm) H- ERB

LCD Display (17mm) Batch controller

A - Standard Pulse Reel/Hall Effect

I - Standard Pulse Reel/Reed Effect

J - Standard Pulse Hall/Hall Effect

K - High Resolution Hall NPN

The MX25 1" Digital Flow Meters are suitable for flows between 1.6-32 GPM. The 1" Digital Flow Meters have an accuracy of +/- 0.5% and provides exceptional levels of reliability and durability.

SPECIFICATIONS

	MX	25F	МХ	(25 S	MX25P		
Materials of Construction Meter Body	Aluminium (6061)		Aluminium (6061)		Stainless Steel (316)		
Rotor	PPS		Stainless Steel (316)		PPS Stainless Steel (316)		
Seals	Fluorocarbon (FKM)		PTFE encapsulated (I	FEP)	PTFE encapsulated ((FEP)	
Design Specifications Process Connections	Threaded 1" G 1" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	Threaded 1" G 1" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	Threaded 1" G 1" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	
Technical Specifications Flow rate	<5cP 10-100L/min 2.6-26USG/min	>5cP 6-120L/min 1.6-32USG/min	<5cP 10-100L/min 2.6-26USG/min	>5cP 6-120L/min 1.6-32USG/min	<5cP 10-100L/min 2.6-26USG/min	>5cP 6-120L/min 1.6-32USG/min	
Operating Temperature Range*	-40 - 80°C -40 - 176°F		-40 - 120°C -40 - 248°F		-40 - 80°C (150°C with high temp. rotors) -40 - 176°F (302°F with high temp. rotors)		
Max. Operating Pressure**	2000 psi 138 Bar		2000 psi 138 Bar		2000 psi 138 Bar		
Accuracy	+/- 0.5%		+/- 0.5%		+/- 0.5%		
Repeatability	+/- 0.03%	+/- 0.03%		+/- 0.03%		+/- 0.03%	
Nominal K-Factor	9.510 Pulses/Gallon		9.510 Pulses/Gallon		9.510 Pulses/Gallon	9.510 Pulses/Gallon	

*Temperature based on standard pulse output - subject to change dependant on rotor and output type, contact Macnaught technical support for further investigations ** Pressure rating subject to change as per flange rating

	DESCRIPTION	SWITCH TYPE	OUTPUT TYPE	MX25F	MX25S	MX25P
х	No Output	-	No Output	•	٠	٠
A	Standard Pulse	Reed /Hall (NPN)	Pulse (1m flying lead)	•	•	•
В	Ex approved (Ex ia)	Hall (NPN)	Pulse (2m DIN cable)	-	•	•
D	PR (LCD 12mm display)	-	Display 12mm	•	•	•
E	PRA (LCD 12mm display)	-	Display 12mm, 4-20mA output, Pulse	•	•	•
F	ER (LCD 17mm display)	-	Display 17mm	•	•	•
G	ERA (LCD 17mm display)	-	Display 17mm, 4-20mA output, Pulse	•	•	•
н	ERB (LCD 17mm display)	-	Display 17mm + Batch Control	•	•	•
N	Ex Approved (Ex ia NAMUR)	NAMUR	Pulse (2m DIN cable)	-	•	•
т	High Temp. Pulseerature	Hall (NPN)	Pulse	×	s	s
I	Reed/Reed	Reed/Reed	Pulse (1m flying lead)	-	-	-
1	Hall/Hall	Hall/Hall	Pulse (1m flying lead)	-	-	-
К	High Resolution (omnipolar)	Hall (NPN)	Pulse (1m flying lead)	-	-	-
Available	× Not Available S Or	nly with stainless steel ro	tors – Consult Macnaught Technic	cal regarding ava	ilability	

.....

DIMENSIONS

PULSAR AND DISPLAY HEIGHT - A

OUTPUT A PULSER - Standard

OUTPUT B PULSER - Exia

OUTPUT N PULSER - Exia

OUTPUT T PULSER - High Temp.

137 mr

OUTPUT D,E DISPLAY - LCD 12mm

240mm

OUTPUT F,G,H DISPLAY - LCD 17mm

 $\overline{+}$ $\overline{+}$ $\overline{+}$

176mm

Ø74mm

0

<u>Ø19</u>mm

Ć

25.4mm (1") A/F

<u>Ø16m</u>m

0

MX40 - 1¹/₂" DIGITAL FLOW METERS

SUITABLE FOR FLOW RANGE 2.6-66 GPM

MX40P-1SE Stainless steel body with LCD register Output variations:

B - Ex approved (Ex ia) Intrinsically Safe - NPN N - Ex approved (Ex ia)

Intrinsically Safe - NAMUR **T - High Temp. Pulse** Max temp- 150°C

D - PR LCD Display (12mm) **E - PRA**

LCD Display (12mm) with outputs

F - ER LCD Display (17mm) G- ERA

LCD Display (17mm) H- ERB

LCD Display (17mm) Batch controller

A - Standard Pulse Reel/Hall Effect

I - Standard Pulse Reel/Reed Effect

J - Standard Pulse Hall/Hall Effect K - High Resolution

Hall NPN

The MX40 $1\frac{1}{2}$ " Digital Flow Meters are suitable for flows between 2.6-66 GPM. The $1\frac{1}{2}$ " Digital Flow Meters have an accuracy of +/- 0.5% and provides exceptional levels of reliability and durability.

SPECIFICATIONS

	МХ	40F	МХ	40S	M	(40P	
Materials of Construction Meter Body	Aluminium (6061)		Aluminium (6061)		Stainless Steel (316)		
Rotor	PPS		Aluminium (6061)	Aluminium (6061)		PPS Stainless Steel (316)	
Seals	Fluorocarbon (FKM)		PTFE encapsulated (FEP)	PTFE encapsulated	(FEP)	
Design Specifications Process Connections	Threaded 11⁄2" G 11⁄2" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	Threaded 11/2" G 11/2" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	Threaded 1 ½" G 1 ½" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	
Technical Specifications Flow rate	<5cP 15-235L/min 4-62USG/min	>5cP 10-250L/min 2.6-66USG/min	<5cP 15-235L/min 4-62USG/min	>5cP 10-250L/min 2.6-66USG/min	<5cP 15-235L/min 4-62USG/min	>5cP 10-250L/min 2.6-66USG/min	
Operating Temperature Range*	-40 - 80°C -40 - 176°F		-40 - 120°C -40 - 248°F		-40 - 80°C (150°C with high temp. rotors) -40 - 176°F (302°F with high temp. rotors)		
Max. Operating Pressure**	1500 psi 103 Bar		1500 psi 103 Bar		1500 psi 103 Bar		
Accuracy	+/- 0.5%		+/- 0.5%		+/- 0.5%		
Repeatability	+/- 0.03%		+/- 0.03%		+/- 0.03%		
Nominal K-Factor	3.830 Pulses/Gallon		3.830 Pulses/Gallon		3.830 Pulses/Gallor	L	

*Temperature based on standard pulse output - subject to change dependant on rotor and output type, contact Macnaught technical support for further investigations ** Pressure rating subject to change as per flange rating

	DESCRIPTION	SWITCH TYPE	OUTPUT TYPE	MX40F	MX40S	MX40P
х	No Output	-	No Output	•	•	٠
А	Standard Pulse	Reed /Hall (NPN)	Pulse (1m flying lead)	•	•	•
В	Ex approved (Ex ia)	Hall (NPN)	Pulse (2m DIN cable)	-	•	•
D	PR (LCD 12mm display)	-	Display 12mm	•	•	•
E	PRA (LCD 12mm display)	-	Display 12mm, 4-20mA output, Pulse	•	•	•
F	ER (LCD 17mm display)	-	Display 17mm	•	•	•
G	ERA (LCD 17mm display)	-	Display 17mm, 4-20mA output, Pulse	•	•	٠
н	ERB (LCD 17mm display)	-	Display 17mm + Batch Control	•	•	•
Ν	Ex Approved (Ex ia NAMUR)	NAMUR	Pulse (2m DIN cable)	-	•	•
т	High Temp. Pulseerature	Hall (NPN)	Pulse	×	s	S
I	Reed/Reed	Reed/Reed	Pulse (1m flying lead)	-	-	-
J	Hall/Hall	Hall/Hall	Pulse (1m flying lead)	-	-	-
К	High Resolution (omnipolar)	Hall (NPN)	Pulse (1m flying lead)	-	-	-
Available	× Not Available S Or	nly with stainless steel ro	tors – Consult Macnaught Technic	cal regarding ava	ilability	

.....

DIMENSIONS

MX50 – 2" DIGITAL FLOW METERS

SUITABLE FOR FLOW RANGE 4-130 GPM

MX50P-1SE Stainless steel body with LCD register Output variations:

B - Ex approved (Ex ia) Intrinsically Safe - NPN N - Ex approved (Ex ia)

Intrinsically Safe - NAMUR **T - High Temp. Pulse** Max temp- 150°C

D - PR LCD Display (12mm) **E - PRA**

LCD Display (12mm) with outputs

F - ER LCD Display (17mm) G- ERA

LCD Display (17mm) H- ERB

LCD Display (17mm) Batch controller

A - Standard Pulse Reel/Hall Effect

I - Standard Pulse Reel/Reed Effect

J - Standard Pulse Hall/Hall Effect

K - High Resolution Hall NPN

The MX50 2" Digital Flow Meters are suitable for flows between 4-130 GPM. The 2" Digital Flow Meters have an accuracy of +/- 0.5% and provides exceptional levels of reliability and durability.

SPECIFICATIONS

	MX50F		MX50S		MX50P	
Materials of Construction Meter Body	Aluminium (6061)		Aluminium (6061)		Stainless Steel (316)	
Rotor	PPS		Aluminium (6061)		PPS Stainless Steel (316)	
Seals	Fluorocarbon (FKM)		PTFE encapsulated (FEP)		PTFE encapsulated (FEP)	
Design Specifications Process Connections	Threaded 2" G 2" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	Threaded 2" G 2" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	Threaded 2" G 2" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k
Technical Specifications Flow rate	<5cP 15-500L/min 4-130 USG/min	> 5cP 15-500L/min 4-130 USG/min	<5cP 15-500L/min 4-130 USG/min	> 5cP 15-500L/min 4-130 USG/min	<5cP 15-500L/min 4-130 USG/min	> 5cP 15-500L/min 4-130 USG/min
Operating Temperature Range*	-40 - 80°C -40 - 176°F		-40 - 120°C -40 - 248°F		-40 - 80°C (150°C with high temp. rotors) -40 - 176°F (302°F with high temp. rotors)	
Max. Operating Pressure**	1200 psi 82 Bar		1200 psi 82 Bar		1200 psi 82 Bar	
Accuracy	+/- 0.5%		+/- 0.5%		+/- 0.5%	
Repeatability	+/- 0.03%		+/- 0.03%		+/- 0.03%	
Nominal K-Factor	1.770 Pulses/Gallon		1.770 Pulses/Gallon		1.770 Pulses/Gallon	

*Temperature based on standard pulse output - subject to change dependant on rotor and output type, contact Macnaught technical support for further investigations ** Pressure rating subject to change as per flange rating

	DESCRIPTION	SWITCH TYPE	OUTPUT TYPE	MX50F	MX50S	MX50P
х	No Output	-	No Output	•	•	•
А	Standard Pulse	Reed /Hall (NPN)	Pulse (1m flying lead)	•	•	•
в	Ex approved (Ex ia)	Hall (NPN)	Pulse (2m DIN cable)	-	•	•
D	PR (LCD 12mm display)	-	Display 12mm	•	•	•
E	PRA (LCD 12mm display)	-	Display 12mm, 4-20mA output, Pulse	•	•	•
F	ER (LCD 17mm display)	-	Display 17mm	•	•	•
G	ERA (LCD 17mm display)	-	Display 17mm, 4-20mA output, Pulse	•	•	•
н	ERB (LCD 17mm display)	-	Display 17mm + Batch Control	•	•	•
N	Ex Approved (Ex ia NAMUR)	NAMUR	Pulse (2m DIN cable)	-	•	•
т	High Temp. Pulseerature	Hall (NPN)	Pulse	×	S	s
I	Reed/Reed	Reed/Reed	Pulse (1m flying lead)	-	-	-
J	Hall/Hall	Hall/Hall	Pulse (1m flying lead)	-	-	-
к	High Resolution (omnipolar)	Hall (NPN)	Pulse (1m flying lead)	-	-	-
Available	× Not Available S Or	nly with stainless steel ro	tors – Consult Macnaught Technic	cal regarding ava	ilability	

.....

DIMENSIONS

OUTPUT A PULSER - Standard

OUTPUT B PULSER - Exia

OUTPUT N PULSER - Exia

OUTPUT T PULSER - High Temp.

OUTPUT D,E DISPLAY - LCD 12mm

OUTPUT F,G,H DISPLAY - LCD 17mm

.....

Ø74mn

Ø19mm

r

<u>25.4mm (1") A/F</u>

Ø16mm

0

Ø99mm_

MX75 - 3" DIGITAL FLOW METERS

SUITABLE FOR FLOW RANGE 5-194 GPM

MX75F-1SE Aluminium body with LCD register Output variations:

B - Ex approved (Ex ia) Intrinsically Safe - NPN N - Ex approved (Ex ia)

Intrinsically Safe - NAMUR **T - High Temp. Pulse**

Max temp- 150°C

D - PR LCD Display (12mm)

E - PRA LCD Display (12mm) with outputs

F - ER LCD Display (17mm) G- ERA

LCD Display (17mm) H- ERB

LCD Display (17mm) Batch controller

A - Standard Pulse Reel/Hall Effect

I - Standard Pulse Reel/Reed Effect

J - Standard Pulse Hall/Hall Effect

K - High Resolution Hall NPN

The MX75 3" Digital Flow Meters are suitable for flows between 5-194 GPM. The 3" Digital Flow Meters have an accuracy of +/- 0.5% and provides exceptional levels of reliability and durability.

SPECIFICATIONS

	MX75F		MX75S		
Materials of Construction Meter Body	Cast Aluminium (6061)		Cast Aluminium (6061)		
Rotor	Aluminium (6061)		Aluminium (6061)		
Seals	Fluorocarbon (FKM)		PTFE encapsulated (FEP)		
Design Specifications Process Connections	Threaded 3" G 3" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	Threaded 3" G 3" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	
Technical Specifications Flow rate	<5cP 60-600L/min 17-170USG/min	> 5cP 20-733L/min 5-194USG/min	<5cP 60-600L/min 17-170USG/min	> 5cP 20-733L/min 5-194USG/min	
Operating Temperature Range*	-40 - 120°C -40 - 248°F		-40 - 120°C -40 - 248°F		
Max. Operating Pressure**	175 psi 12 bar		175 psi 12 bar		
Accuracy	+/- 0.5%		+/- 0.5%		
Repeatability	+/- 0.03%		+/- 0.03%		
Nominal K-Factor	0.682 Pulses/Gallon		0.682 Pulses/Gallon		

*Temperature based on standard pulse output - subject to change dependant on rotor and output type, contact Macnaught technical support for further investigations ** Pressure rating subject to change as per flange rating

	DESCRIPTION	SWITCH TYPE	OUTPUT TYPE	MX75F	MX75S
Х	No Output	-	No Output	•	•
Α	Standard Pulse	Reed /Hall (NPN)	Pulse (1m flying lead)	•	•
в	Ex approved (Ex ia)	Hall (NPN)	Pulse (2m DIN cable)	-	٠
D	PR (LCD 12mm display)	-	Display 12mm	•	•
E	PRA (LCD 12mm display)	-	Display 12mm, 4-20mA output, Pulse	•	•
F	ER (LCD 17mm display)	-	Display 17mm	•	•
G	ERA (LCD 17mm display)	-	Display 17mm, 4-20mA output, Pulse	•	٠
н	ERB (LCD 17mm display)	-	Display 17mm + Batch Control	•	•
Ν	Ex Approved (Ex ia NAMUR)	NAMUR	Pulse (2m DIN cable)	-	•
т	High Temp. Pulseerature	Hall (NPN)	Pulse	×	•
I	Reed/Reed	Reed/Reed	Pulse (1m flying lead)	-	-
1	Hall/Hall	Hall/Hall	Pulse (1m flying lead)	-	-
К	High Resolution (omnipolar)	Hall (NPN)	Pulse (1m flying lead)	_	-
 Available 	× Not Available S Onl	y with stainless steel roto	rs – Consult Macnaught Technic	cal regarding availability	

.....

DIMENSIONS

PULSER AND DISPLAY HEIGHT - A

25.4mm (1") A/F

OUTPUT A PULSER - Standard

OUTPUT B PULSER - Exia

OUTPUT N PULSER - Exia

OUTPUT T PULSER - High Temp.

OUTPUT D,E DISPLAY - LCD 12mm

OUTPUT F,G,H DISPLAY - LCD 17mm

Ø74mm

C

<u>Ø16m</u>m

O

Ø99mm

.....

0

Ø19mm

27

MX100 - 4" DIGITAL FLOW METERS

SUITABLE FOR FLOW RANGE 31.7-317 GPM

MX100F-1SE Aluminium steel body with LCD register

Output variations:

B - Ex approved (Ex ia) Intrinsically Safe - NPN N - Ex approved (Ex ia) Intrinsically Safe - NAMUR

T - High Temp. Pulse Max temp- 150°C

D - PR LCD Display (12mm)

E - PRA LCD Display (12mm) with outputs

F - ER LCD Display (17mm) G- ERA

LCD Display (17mm) H- ERB

LCD Display (17mm) Batch controller

A - Standard Pulse Reel/Hall Effect

I - Standard Pulse Reel/Reed Effect

J - Standard Pulse Hall/Hall Effect

K - High Resolution Hall NPN

The MX100 4" Digital Flow Meter are suitable for flows between 31.7-317 GPM. The 4" Digital Flow Meters have an accuracy of +/-0.5% and provides exceptional levels of reliability and durability.

SPECIFICATIONS

	MX1	100F	MX100S		
Materials of Construction Meter Body	Cast Aluminium (6061)		Cast Aluminium (6061)		
Rotor	Aluminium (6061)		Aluminium (6061)		
Seals	Fluorocarbon (FKM)		PTFE encapsulated (FEP)		
Design Specifications Process Connections	Threaded 3" G 3" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	Threaded 3" G 3" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	
Technical Specifications Flow rate	<5cP 220-1000L/min 60-250USG/min	>5cP 120-1200L/min 31.7-317USG/min	<5cP 220-1000L/min 60-250USG/min	>5cP 120-1200L/min 31.7-317USG/min	
Operating Temperature Range*	-40 - 120°C -40 - 248°F		-40 - 120°C -40 - 248°F		
Max. Operating Pressure**	175 psi 12 bar		175 psi 12 bar		
Accuracy	+/- 0.5%		+/- 0.5%		
Repeatability	+/- 0.03%		+/- 0.03%		
Nominal K-Factor	0.608 Pulses/Gallon		0.608 Pulses/Gallon		

*Temperature based on standard pulse output - subject to change dependant on rotor and output type, contact Macnaught technical support for further investigations ** Pressure rating subject to change as per flange rating

.....

OUTPUT TYPES

	DESCRIPTION	SWITCH TYPE	OUTPUT TYPE	MX100F	MX100S	
х	No Output	-	No Output	•	•	
Α	Standard Pulse	Reed /Hall (NPN)	Pulse (1m flying lead)	•	•	
в	Ex approved (Ex ia)	Hall (NPN)	Pulse (2m DIN cable)	-	٠	
D	PR (LCD 12mm display)	-	Display 12mm	•	•	
E	PRA (LCD 12mm display)	-	Display 12mm, 4-20mA output, Pulse	•	•	
F	ER (LCD 17mm display)	-	Display 17mm	•	•	
G	ERA (LCD 17mm display)	-	Display 17mm, 4-20mA output, Pulse	•	•	
н	ERB (LCD 17mm display)	-	Display 17mm + Batch Control	•	•	
Ν	Ex Approved (Ex ia NAMUR)	NAMUR	Pulse (2m DIN cable)	-	•	
т	High Temp. Pulseerature	Hall (NPN)	Pulse	×	•	
1	Reed/Reed	Reed/Reed	Pulse (1m flying lead)	-	-	
1	Hall/Hall	Hall/Hall	Pulse (1m flying lead)	-	-	
к	High Resolution (omnipolar)	Hall (NPN)	Pulse (1m flying lead)	_	-	
 Available 	e 🗙 Not Available S Only with stainless steel rotors - Consult Macnaught Technical regarding availability					

.....

DIMENSIONS

242mr

*Length subject to change refer to appendix B (pg. 74) for full dimension variations

0

M-SERIES FLOW METERS

M-SERIES FLOW METERS

MECHANICAL FLOW METERS

The Mechanical Flow Meters range is the original meter range from Macnaught. They are available with reliable mechanical displays offer a measurement option for unpowered or remote sites. All Macnaught Flow Meters are supplied with an individual Test Report.

EXPLODED DIAGRAM

PRODUCT IDENTIFICATION SYSTEM

012

S

F012-1S3

	MATERIALS OF CONSTRUCTION					
	CATEGORY (METER/ROTOR/SEAL)	MODELS				
_	AL/PPS/FKM	F012 - 050				
F	AL/AL/FKM	F075 -100				
м	SS/PPS/FEP	M012 - 050				
~	AL/SS/FEP	S025				
5	AL/AL/FEP	S040 - 100				

	PORT SIZE
012	1/2"
025	1"
040	1 1/2"
050	2"
075	3"
100	4"

	PORT CONNECTION	MODELS
1	G (Litres Display)	
2	NPT (US Gallons Display)	
3	NPT (Litres Display)	All Models
4	BSP Rc (Litres Display)	

	ROTOR	MODELS
S	Standard Rotors	Category F and M
T*	High Temperature	Category M and S025
v	High Viscosity	PPS material for F012-F050 AL material for F075-F100, S040-S100 SS material for M025-M050

*T type rotors are offered in Aluminium for category S040 to S100

	OUTPUT	MODELS
3	Standard Mechanical	012-050
4	Heavy Duty Mechanical	All Models

M-SERIES FLOW METERS

PULSE FLOW METERS (STANDARD)

The Macnaught Pulse Flow Meter range are the original meter range from Macnaught. They offer a compact and robust metal body, manufactured from high quality grades of cast aluminium and stainless steel. For highly corrosive chemical applications, BR42B grade PPS material is used to deliver superior stability*.

EXPLODED DIAGRAM

PRODUCT IDENTIFICATION SYSTEM

006

S

Δ

F006-1SA

	MATERIALS OF CONSTRUCTION					
	CATEGORY (BODY/ROTOR/SEAL) MODELS					
F	AL/SS/FKM	All Models				
м	SS/SS/FFKM	M006/M009				
S	AL/SS/FFKM	S006/S009				
СР	PPS/PPS/FFKM	CR006 and CR009				
CR	PPS/PPS/FEP	CR025				

	PORT SIZE	MODELS
006	1/4"	All models
009	1/4"	All models
025	1"	Category CR only

	PORT CONNECTION	MODELS
1	G	Category F, M and S only
2	NPT	All models
4	Rc	All models

	ROTOR TYPE	MODELS
S	Standard	F and CR category only
Т	High Temp. Pulse	M and S category only
V	High Viscosity	009 only; Not available for CR

	OUTPUT TYPE	MODELS		
1	Reed/Hall	Flying lead for 006/009 User connection for CR025		
2	Reed/Reed	006/009 Single reed ONLY		
Α	Reed/Hall DIN connection	Net Available for CD005		
в	Reed/Reed DIN connection	NOT AVAILABLE TOF CR025		

M-SERIES FLOW METERS

PULSE FLOW METERS (HIGH PRESSURE)

Macnaught High Pressure Flow Meters are manufactured from robust stainless steel body utilizing high quality billet suitable for use in the harshest environments. Designed to withstand pressures from 3000psi to 8000psi, the Macnaught High Pressure Flow Meters fit virtually any high pressure liquid measurement requirements. All Macnaught Flow Meters are supplied with an individual Test Report.

EXPLODED DIAGRAM

PRODUCT IDENTIFICATION SYSTEM

M1 – 1/4" PULSE FLOW METERS

SUITABLE FOR FLOW RANGE 0.13-26 GPH

.....

F006-1S1 Aluminium body with flying lead CR006-1SA PPS body with DIN variation

Macnaught ¹/₄" Pulse Flow Meters are a small capacity meter in the M-SERIES range. Differentiated by its flow rate capabilities. Suitable for flows between 0.13-26 GPH. The ¹/₄" Pulse Flow Meters have an accuracy of +/-0.5% and provides exceptional levels of reliability and durability.

SPECIFICATIONS

	F006 S006 M006		CR	006				
Materials of Construction Meter Body	Aluminium	Aluminiu	Aluminium		Stainless Steel		PPS	
Rotor	Stainless Steel	Stainless	Steel	Stainless Steel	Stainless Steel		PPS	
Seals	Fluorocarbon (FKM)	Perfluor	oelastomer (FFKM)	Perfluoroelasto	mer (FFKM)	Perfluoroelasto	mer (FFKM)	
Design Specifications Process Connections	Design fications 1/4" G 1/4" G vnnections 1/4" NPT 1/4" NPT 1/4" NPT		1/4" BSP (Rc) 1/4" NPT					
Technical Specifications Flow rate	<5cP >5cP 2-100L/hr 0.5-100L 0.5-26USG/hr 0.13-26U	<5cP 2-100L/h JSG/hr 0.5-26US	>5cP nr 0.5-100L/hr SG/hr 0.13-26USG/hr	<5cP 2-100L/hr 0.5-26USG/hr	> 5cP 0.5-100L/hr 0.13-26USG/hr	<5cP 2-100L/hr 0.5-26USG/hr	>5cP 0.5-100L/hr 0.13-26USG/hr	
Non-lubricating fluids	6-100L/hr 1.58-26USG/hr	6-100L/ł 1.58-26L	nr ISG/hr	6-100L/hr 1.58-26USG/hr		6-100L/hr 1.58-26USG/hr		
Operating Temperature Range*	-40 - 80°C -40 - 176°F	-40 - 12 -40 - 24	0℃ 8°F	-40 - 120°C -40 - 248°F		-40 - 80°C -40 - 176°F		
Max. Operating Pressure	800 psi 55 bar	800 psi 55 bar		800 psi 55 bar		75 psi 5 bar		
Accuracy	+/- 0.5%	+/- 0.5%	6	+/- 0.5%		+/- 0.5%		
Repeatability	+/- 0.03%	+/- 0.03	+/- 0.03%		+/- 0.03%			
Nominal K-Factor	264.172 Pulses/Gallon	264.172	Pulses/Gallon	264.172 Pulses	s/Gallon	264.172 Pulses	/Gallon	

*Temperature based on standard pulse output - subject to change dependant on rotor and output type, contact Macnaught technical support for further investigations CR's are an M-SERIES meter. They are not modular in design and do not feature digital direct mount options. Across the M-series, differentiation is expressed through the material compatibility table etc as the key variable is wetted components. The CR is not it's own category rather a combination that suits particular conditions as is all the meters in the M-SERIES category it is classified with. This was the logic for the entire range.

.....

OUTPUT TYPES

PREFIX	OUTPUT	SWITCH TYPE	F006	S006	M006	CR006
1	Pulse output	Reed/Hall Flying Lead	•	•	•	•
2	Pulse output	Reed Flying Lead	•	•	•	•
А	Pulse output	Reed/Hall DIN Connection	•	•	•	•
В	Pulse output	Reed/Reed DIN Connection	•	•	•	•
 Available 	× Not Available					

DIMENSIONS

CR006

Flying Lead

M1 – 1/4" HIGH PRESSURE FLOW METERS

SUITABLE FOR FLOW RANGE 0.13-26 GPH

Also available as optional accessories:

LCD Display (12mm)

DRA LCD Display (12mm) with outputs

MH006-1T1

Stainless steel body with pulser cap

Macnaught ¹/4" High Pressure Flow Meters are a small capacity meter in the M-SERIES range. Suitable for flows between 0.13-26 GPH. The ¹/4" High Pressure Flow Meters are manufactured from high quality billet for enhanced material reliability with pressure ratings of up to 8000psi and have an accuracy of +/- 0.5% to provide exceptional levels of reliability and durability.

SPECIFICATIONS

		MH006	
Materials of Construction Meter Body	Stainless Steel		
Rotor	Stainless Steel		
Seals	Perfluoroelastomer (FFKM)		
Design Specifications Process Connections	1/4" G 1/4" NPT		
Technical Specifications Flow rate	<5CP 2-100L/hr 0.5-26USG/hr	>5cP 0.5-100L/hr 0.13-26USG/hr	
Non-lubricating fluids	6-100L/hr 1.58-26USG/hr		
Operating Temperature Range*	-40 - 120°C -40 - 248°F		
Pressure	8000 psi 557 bar		
Accuracy	+/- 0.5%		
Repeatability	+/- 0.03%		
Nominal K-Factor	264.172 Pulses/Gallon		
Pulse Output Options Pulser Pulser	Single Hall Effect Single Reed Switch		
Local Display Options Type DR	LCD display (12mm)	No Outputs	
Type DRA	LCD display (12mm)	Outputs: Scaled Pulse, 4-20mA and Hi/Lo Flow Alarm	

*Temperature based on standard pulse output - subject to change dependant on rotor and output type, contact Macnaught technical support for further investigations

MH006

ISOMETRIC VIEW

MH006 with DR Display

ISOMETRIC VIEW

M2 – 1/4" PULSE FLOW METERS

SUITABLE FOR FLOW RANGE 4-132 GPH

F009-1S1 Aluminium body with flying lead CR009-1SA PPS body with DIN variation

Macnaught ¹/₄" Pulse Flow Meters are a small capacity meter in the M-SERIES range. Differentiated by its flow rate capabilities. Suitable for flows between 4-132 GPH. The ¹/₄" Pulse Flow Meters have an accuracy of +/-0.5% and provides exceptional levels of reliability and durability.

SPECIFICATIONS

	F009		S009		M009		CR009	
Materials of Construction Meter Body	Aluminium		Aluminium		Stainless Steel		PPS	
Rotor	Stainless Steel		Stainless Steel		Stainless Steel		PPS	
Seals	Fluorocarbon (FKM)		Perfluoroelastom	ner (FFKM)	Perfluoroelastor	er (FFKM)	Perfluoroelastom	er (FFKM)
Design Specifications Process Connections	1/4" G 1/4" NPT		1/4" G 1/4" NPT		1/4" G 1/4" NPT		¹ /4" BSP (Rc) ¹ /4" NPT	
Technical Specifications Flow rate	<5cP 25-500L/hr 6.6-132USG/hr	>5cP 15-500L/hr 4-132USG/hr	<5cP 25-500L/hr 6.6-132USG/hr	>5cP 15-500L/hr 4-132USG/hr	<5cP 25-500L/hr 6.6-132USG/hr	>5cP 15-500L/hr 4-132USG/hr	<5cP 25-500L/hr 6.6-132USG/hr	>5cP 15-500L/hr 4-132USG/hr
Operating Temperature Range*	-40 - 80°C -40 - 176°F		-40 - 120°C -40 - 248°F		-40 - 120°C -40 - 248°F		-40 - 80°C -40 - 176°F	
Max. Operating Pressure	800 psi 55 bar		800 psi 55 bar		800 psi 55 bar		75 psi 5 bar	
Accuracy	+/- 0.5%		+/- 0.5%		+/- 0.5%		+/- 1.0%	
Repeatability	+/- 0.03%		+/- 0.03%		+/- 0.03%		+/- 0.03%	
Nominal K-Factor	105.669 Pulses/	'Gallon	105.669 Pulses	/Gallon	105.669 Pulses	'Gallon	105.669 Pulses/	'Gallon

*Temperature based on standard pulse output - subject to change dependant on rotor and output type, contact Macnaught technical support for further investigations CR's are an M-SERIES meter. They are not modular in design and do not feature digital direct mount options. Across the M-series, differentiation is expressed through the material compatibility table etc as the key variable is wetted components. The CR is not it's own category rather a combination that suits particular conditions as is all the meters in the M-SERIES category it is classified with. This was the logic for the entire range.

OUTPUT TYPES

PREFIX	OUTPUT	SWITCH TYPE	F009	S009	M009	CR009
1	Pulse output	Reed/Hall Flying Lead	•	•	•	•
2	Pulse output	Reed Flying Lead	•	•	•	•
А	Pulse output	Reed/Hall DIN Connection	•	•	•	•
В	Pulse output	Reed/Reed DIN Connection	•	•	•	•

.....

• Available X Not Available

DIMENSIONS

CR009

Flying Lead

M2 – 1/4" HIGH PRESSURE FLOW METERS

SUITABLE FOR FLOW RANGE 4-132 GPH

Also available as optional accessories:

LCD Display (12mm)

DRA LCD Display (12mm) with outputs

MH009-1T1

Stainless steel body with pulser cap

Macnaught 1/4" High Pressure Flow Meters are a small capacity meter in the M-SERIES range. Suitable for flows between 4-132 GPH. The 1/4" High Pressure Flow Meters are manufactured from high quality billet for enhanced material reliability with pressure ratings of up to 8000psi and have an accuracy of +/- 0.5% to provide exceptional levels of reliability and durability.

SPECIFICATIONS

		ЛНоо9
Materials of Construction Meter Body	Stainless Steel	
Rotor	Stainless Steel	
Seals	Perfluoroelastomer (FFKM)	
Design Specifications Process Connections	Threaded ¼" G ¼" NPT	
Technical Specifications Flow rate	<5cP 25-500L/hr 6.6-132USG/hr	>5cP 15-500L/hr 4-132USG/hr
Operating Temperature Range*	-40 - 120°C -40 - 248°F	
Max. Operating Pressure	8000 psi 557 bar	
Accuracy	+/- 0.5%	
Repeatability	+/- 0.03%	
Nominal K-Factor	105.669 Pulses/Gallon	
Pulse Output Options Pulser Pulser	Single Hall Effect Single Reed Switch	
Local Display Options Type DR	LCD display (12mm)	No Outputs
Type DRA	LCD display (12mm)	Outputs: Scaled Pulse, 4-20mA and Hi/Lo Flow Alarm

*Temperature based on standard pulse output - subject to change dependant on rotor and output type, contact Macnaught technical support for further investigations

MH009

ISOMETRIC VIEW

MH009 with DR Display

ISOMETRIC VIEW

M4 – 1/2" HIGH PRESSURE FLOW METERS

SUITABLE FOR FLOW RANGE 0.5-8GPM

Also available as optional accessories:

LCD Display (12mm)

DRA LCD Display (12mm) with outputs

MH012-1T1

Stainless steel body with pulser cap

Macnaught $\frac{1}{2}$ " High Pressure Flow Meters are suitable for low to medium flow range of 0.5-8GPM. The $\frac{1}{2}$ " High Pressure Flow Meters are manufactured from high quality billet for enhanced material reliability with pressure ratings of up to 3000psi and have an accuracy of +/- 0.5% to provide exceptional levels of reliability and durability.

SPECIFICATIONS

	N	IH012
Materials of Construction Meter Body	Stainless Steel	
Rotor	Stainless Steel PPS option	
Seals	PTFE encapsulated (FEP)	
Design Specifications Process Connections	Threaded ½" G ½" NPT	
Technical Specifications Flow rate	<5cP 3-25L/min 0.6-6.6USG/min	>5cP 2-30L/min 0.5-8USG/min
Operating Temperature Range*	-40 - 120°C -40 - 248°F	
Pressure	3000psi 207 Bar	
Accuracy	+/- 1.0%	
Repeatability	+/- 0.03	
Nominal K-Factor	29.587 Pulses/Gallon	
Pulse Output Options Pulser Pulser	Dual Reed/Hall Dual Reed Switch	
Local Display Options Type DR	LCD display (12mm)	No Outputs
Type DRA	LCD display (12mm)	Outputs: Scaled Pulse, 4-20mA and Hi/Lo Flow Alarm

*Temperature based on standard pulse output - subject to change dependant on rotor and output type, contact Macnaught technical support for further investigations

MH012

ISOMETRIC VIEW

MH012 with DR Display

ISOMETRIC VIEW

M4 – 1/2" MECHANICAL METERS

SUITABLE FOR FLOW RANGE 0.5-8GPM

Output variations:

Type 4 Heavy Duty Mechanical Display

F012-1S3

Aluminium body with standard mechanical display

Designed and built to suit a broad range of industrial applications, the Macnaught ½" Mechanical Meters are suitable for flows between 0.5-8GPM. The ½" Mechanical Meters have an accuracy of +/- 1.0% and provides exceptional levels of reliability and durability. These meters are an ideal solution for remote sites or where ease of installation, accuracy and reliability are the priority.

SPECIFICATIONS

	F0	12	M	012
Materials of Construction Meter Body	Cast Aluminium		Cast Stainless Steel	
Rotor	PPS		PPS Stainless Steel	
Seals	Fluorocarbon (FKM)		PTFE encapsulated (FEP)	
Design Specifications Process Connections	Threaded ½" G ½" NPT		Threaded ½" G ½" NPT	
Technical Specifications Flow rate	<5cP 3-25L/min 0.6-6.6USG/min	>5cP 2-30L/min 0.5-8USG/min	<5cP 3-25L/min 0.6-6.6USG/min	>5cP 2-30L/min 0.5-8USG/min
Max. Operating Temperature	-40 - 80°C -40 - 176°F		-40 - 80°C -40 - 176°F	
Max. Operating Pressure	500 psi 35 bar		500psi 35 bar	
Accuracy	+/- 1.0%		+/- 1.0%	
Repeatability	+/- 0.03%		+/-0.03%	
Mechanical Display Type 3 - Standard	Polypropylene (IP56)		Polypropylene (IP56)	
Type 4 - Heavy Duty	Aluminium (IP67)		Aluminium (IP67)	

F012 M012

DISPLAY HEIGHT - A

TYPE 3 MECHANICAL REGISTER - STANDARD

Ø115mr

TYPE 4

MECHANICAL REGISTER - HEAVY DUTY

M-SERIES FLOW METERS

M7 – 1" PULSE FLOW METERS

SUITABLE FOR FLOW RANGE 0.8-21 GPM

Also available as optional accessories:

DR LCD Display (12mm) DRA LCD Display (12mm) wit

DRA LCD Display (12mm) with outputs

ER LCD Display (17mm) ERA LCD Display (17mm) with outputs

ERB LCD Display (17mm) with batch control output

M-SERIES FLOW METERS

CR025-2S1

The Macnaught 1" Pulse Flow Meters are specialised meters suitable for aggressive chemicals and water based products. Suitable for flows between 0.8-21 GPM. The 1" Pulse Flow Meters have an accuracy of +/- 0.5% and provides exceptional levels of reliability and durability.

SPECIFICATIONS

	CR	025
Materials of Construction		
Meter Body	PPS	
Rotor	PPS	
Seals	PTFE encapsulated (FEP)	
Design Specifications Process Connections	Threaded 1" BSP (Rc) 1" NPT	
Technical Specifications Flow rate	<5cP 8-70L/min 2-18.5 USG/min	>5cP 3-80L/min 0.8-21 USG/min
Operating Temperature Range	-40 - 80°C -40-176°F	
Max. Operating Pressure	150 psi 10 Bar	
Accuracy	+/- 0.5%	
Repeatability	+/- 0.03%	
Nominal K-Factor	13.737 Pulses/Gallon	
Pulse Output Options Pulser Pulser Pulser	Reed/Hall Effect Reed/Reed Switch Dual Hall	
Local Display Options Type DR	LCD display (12mm)	No Outputs
Type DRA	LCD display (12mm)	Outputs: Scaled Pulse, 4-20mA and Hi/Lo Flow Alarm

CR025

CR025 with ER Display

ISOMETRIC VIEW

M-SERIES FLOW METERS

CR025 with DR Display

M10 - 1" MECHANICAL METERS

SUITABLE FOR FLOW RANGE 1.6-32 GPM

Output variations:

Type 3 Standard Mechanical Display

Type 4 Heavy Duty Mechanical Display

F025-1S3

Aluminium body with standard mechanical display

Designed and built to suit a broad range of industrial applications, the Macnaught 1" Mechanical Meters are suitable for flows between 1.6-32 GPM. The 1" mechanical meters have an accuracy of +/- 1.0% and provides exceptional levels of reliability and durability. These meters are an ideal solution for remote sites or where ease of installation, accuracy and reliability are the priority.

SPECIFICATIONS

	F0	25	M)25	S025	
Materials of Construction Meter Body Rotor	Cast Aluminium PPS		Cast Stainless Steel		Cast Aluminium Stainless Steel	
Seals	Fluorocarbon (FKM)		PTFE encapsulated (FEP)		PTFE encapsulated (FEP)	
Design Specifications Process Connections	Threaded 1" G 1" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	Threaded 1" G 1" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	Threaded 1" G 1" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k
Technical Specifications Flow rate	<5cP 10-100L/min 2.6-26USG/min	> 5cP 6-120L/min 1.6-32USG/min	<5cP 10-100L/min 2.6-26USG/min	>5cP 6-120L/min 1.6-32USG/min	<5cP 10-100L/min 2.6-26USG/min	> 5cP 6-120L/min 1.6-32USG/min
Operating Temperature Range*	-40 - 80°C -40 - 176°F		-40 - 80°C -40 - 176°F		-40 - 120°C -40 - 248°F	
Max. Operating Pressure**	500 psi 35 Bar		500 psi 35 Bar		500 psi 35 Bar	
Accuracy	+/- 1.0%		+/- 1.0%		+/- 1.0%	
Repeatability	+/- 0.03%		+/-0.03%		+/- 0.03%	
Mechanical Display Type 3 - Standard	Polypropylene (IP56)		Polypropylene (IP56)		Polypropylene (IP56)	
Type 4 - Heavy Duty	Aluminium (IP67)		Aluminium (IP67)		Aluminium (IP67)	

*Temperature based on standard rotors - subject to change in M025 when changing rotor material, contact Macnaught technical for further investigations **Pressure subject to change as per flange rating

M025

Ŧ

A 100mm

DISPLAY HEIGHT - A

TYPE 3 MECHANICAL REGISTER - STANDARD

143mm

TYPE 4 MECHANICAL REGISTER - HEAVY DUTY

M40 - 1¹/₂" MECHANICAL METERS

SUITABLE FOR FLOW RANGE 2.6-66 GPM

Output variations:

Type 3 Standard Mechanical Display

Type 4 Heavy Duty Mechanical Display

F040-1S3

Aluminium body with standard mechanical display

Designed and built to suit a broad range of industrial applications, the Macnaught 1½" Mechanical Meters are suitable for flows between 2.6-66 GPM. The 1½" Mechanical Meters have an accuracy of +/- 1.0% and provides exceptional levels of reliability and durability. These meters are an ideal solution for remote sites or where ease of installation, accuracy and reliability are the priority.

SPECIFICATIONS

	F0	40	M)40	S0	40
Materials of Construction Meter Body	Cast Aluminium		Cast Stainless Steel		Cast Aluminium	
Rotor	PPS		PPS Stainless Steel		Aluminium Stainless Steel	
Seals	Fluorocarbon (FKM)		PTFE encapsulated (FEP)		PTFE encapsulated (F	EP)
Design Specifications Process Connections	Threaded 11/2" G 11/2" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	Threaded 11/2" G 11/2" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	Threaded 1½" G 1½" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k
Technical Specifications Flow rate	<5cP 15-235L/min 4-62USG/min	>5cP 10-250L/min 2.6-66 USG/min	<5cP 15-235L/min 4-62USG/min	>5cP 10-250L/min 2.6-66 USG/min	<5cP 15-235L/min 4-62USG/min	>5cP 10-250L/min 2.6-66 USG/min
Operating Temperature Range*	-40 - 80°C -40 - 176°F		-40 - 80°C -40 - 176°F		-40 - 120°C -40 - 248°F	
Max. Operating Pressure**	500 psi 35 Bar		500 psi 35 Bar		500 psi 35 Bar	
Accuracy	+/- 1.0%		+/- 1.0%		+/- 1.0%	
Repeatability	+/- 0.03%		+/- 0.03%		+/- 0.03%	
Mechanical Display Type 3 - Standard	Polypropylene (IP56)		Polypropylene (IP56)		Polypropylene (IP56)	
Type 4 - Heavy Duty	Aluminium (IP67)		Aluminium (IP67)		Aluminium (IP67)	

*Temperature based on standard rotors - subject to change in M040 when changing rotor material, contact Macnaught technical support for further investigations **Pressure subject to change as per flange rating

.....

TYPE 3 MECHANICAL REGISTER - STANDARD

TYPE 4 MECHANICAL REGISTER - HEAVY DUTY

M50 – 2" MECHANICAL METERS

SUITABLE FOR FLOW RANGE 4-130 GPM

Output variations:

Type 3 Standard Mechanical Display

Type 4 Heavy Duty Mechanical Display

F050-1S3

Aluminium body with standard mechanical display and BSP thread adaptors

Designed and built to suit a broad range of industrial applications, the Macnaught 2" Mechanical Meters are suitable for flows between 4-130 GPM. The 2" Mechanical Meters have an accuracy of +/- 1.0% and provides exceptional levels of reliability and durability. These meters are an ideal solution for remote sites or where ease of installation, accuracy and reliability are the priority.

SPECIFICATIONS

	F0	50	M)50	S050	
Materials of Construction Meter Body	Cast Aluminium		Cast Stainless Steel		Cast Aluminium	
Rotor	PPS		PPS Stainless Steel		Stainless Steel Aluminium	
Seals	Fluorocarbon (FKM)		PTFE encapsulated (FEP)		PTFE encapsulated (F	EP)
Design Specifications Process Connections	Threaded 2" G 2 " NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	Threaded 2" G 2 " NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	Threaded 2" G 2 " NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k
Technical Specifications Flow rate	<5cP 15-500L/min 4-130USG/min	> 5cP 15-500L/min 4-130USG/min	<5cP 15-500L/min 4-130USG/min	>5cP 15-500L/min 4-130USG/min	<5cP 15-500L/min 4-130USG/min	> 5cP 15-500L/min 4-130USG/min
Operating Temperature Range*	-40 - 80°C -40 - 176°F		-40 - 80°C -40 - 176°F		-40 - 120°C -40 - 248°F	
Max. Operating Pressure**	500psi 35 Bar		500psi 35 Bar		500psi 35 Bar	
Accuracy	+/- 1.0%		+/- 1.0%		+/- 1.0%	
Repeatability	+/- 0.03%		+/- 0.03%		+/- 0.03%	
Mechanical Display Type 3 - Standard	Polypropylene (IP56)		Polypropylene (IP56)		Polypropylene (IP56)	
Type 4 - Heavy Duty	Aluminium (IP67)		Aluminium (IP67)		Aluminium (IP67)	

*Temperature based on standard rotors - subject to change in M040 when changing rotor material, contact Macnaught technical support for further investigations **Pressure subject to change as per flange rating

F050 M050 S050

ANSI/DIN/JIS

G/NPT

DISPLAY HEIGHT - A

TYPE 3 MECHANICAL REGISTER - STANDARD

TYPE 4 MECHANICAL REGISTER - HEAVY DUTY

*Length subject to change refer to appendix B (pg. 75) for full dimension variations Refer to appendix B (pg. 76) for dimensions of air eliminators

M80 - 3" MECHANICAL METERS

SUITABLE FOR FLOW RANGE 5-194 GPM

Output variations:

Type 4 Heavy Duty Mechanical Display

F075-1S4 Aluminium body with heavy duty mechanical display and ANSI flanges

Designed and built to suit a broad range of industrial applications, the Macnaught 3" Mechanical Meters are suitable for flows between 5-194 GPM. The 3" Mechanical Meters have an accuracy of +/- 1.0% and provides exceptional levels of reliability and durability. These meters are an ideal solution for remote sites or where ease of installation, accuracy and reliability are the priority.

SPECIFICATIONS

	FO	75	S075	
Materials of Construction Meter Body	Cast Aluminium		Cast Aluminium	
Rotor	Aluminium		Aluminium	
Seals	Fluorocarbon (FKM)		PTFE encapsulated (FEP)	
Design Specifications Process Connections	Threaded 3" G 3" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k	Threaded 3" G 3" NPT	Flange ANSI CLASS 150 DIN PN16 JIS 10k
Technical Specifications Flow rate	<5cP 60-600L/min 17-170USG/min	>5cP 20-733L/min 5-194USG/min	<5cP 60-600L/min 17-170USG/min	> 5cP 20-733L/min 5-194USG/min
Operating Temperature Range	-40 - 120°C -40 - 248°F		-40 - 120°C -40 - 248°F	
Max. Operating Pressure**	175 psi 12 Bar		175 psi 12 Bar	
Accuracy	+/- 1.0%		+/- 1.0%	
Repeatability	+/- 0.03%		+/- 0.03%	
Pulse Output Options Type 4 - Heavy Duty	Aluminium (IP67)		Aluminium (IP67)	

**Pressure subject to change as per flange rating

F075 S075

ANSI/DIN/JIS

G/NPT

M100 - 4" MECHANICAL METERS

SUITABLE FOR FLOW RANGE 31.7-317 GPM

Output variations:

Type 4 Heavy Duty Mechanical Display

F100-1S4

Aluminium body with heavy duty mechanical display with ANSI flanges

Designed and built to suit a broad range of industrial applications, the Macnaught 4" Mechanical Meters are suitable for flows between 31.7-317 GPM. Suitable for fuels, lubricants and non-corrosive fluids of up to a viscosity of 1000cP. The 4" Mechanical Meters have an accuracy of +/- 1.0% and provides exceptional levels of reliability and durability. These meters are an ideal solution for remote sites or where ease of installation, accuracy and reliability are the priority.

SPECIFICATIONS

	F1	00	S100	
Materials of Construction Meter Body	Cast Aluminium		Cast Aluminium	
Rotor	Aluminium		Aluminium	
Seals	Fluorocarbon (FKM)		PTFE encapsulated (FEP)	
Design Specifications Process Connections	Threaded 3" G 3" NPT	Flange 4" ANSI CLASS 150 4" DIN PN16 4' JIS 10k	Threaded 3" G 3" NPT	Flange 4" ANSI CLASS 150 4" DIN PN16 4' JIS 10k
Technical Specifications Flow rate	<5cP 220-1000L/min 60-250USG/min	>5cP 120-1200L/min 31.7-317USG/min	<5cP 220-1000L/min 60-250USG/min	>5cP 120-1200L/min 31.7-317USG/min
Operating Temperature Range	-40 - 120°C -40 - 248°F		-40 - 120°C -40 - 248°F	
Max. Operating Pressure***	175 psi 12 Bar		175 psi 12 Bar	
Accuracy	+/- 1.0%		+/- 1.0%	
Repeatability	+/- 0.03%		+/- 0.03%	
Pulse Output Options Type 4 - Heavy Duty	Aluminium (IP67)		Aluminium (IP67)	

**Pressure subject to change as per flange rating

F100-1S4 S100-1S4

ANSI/DIN/JIS

G/NPT

ACCESSORIES

PULSER MODULES

The Pulser Output Options are designed to complement the MX Blind meters series. These options provide the flexibility to apply a style of housing that best satisfies the application requirements.

	TYPE A STANDARD PULSE*	TYPE B INTRINSICALLY SAFE	TYPE N INTRINSICALLY SAFE	TYPE T HIGH TEMP. PULSEERATURE
Switch Type	Reed/Hall Effect	NPN open collector	NAMUR	NPN open collector
Construction	PP (polypropylene)	Stainless Steel	Cuzn, Chrome plated	Stainless Steel
IP rating	IP67	IP67	IP67	IP67
Max temp	120°C (248°F)	85°C (185°F)	85°C (185°F)	150°C (302°F)
Intrinsically safe	×	 ✓ 	✓	×
Approvals	×	ATEX, CSA, FM II I G Ex ia IIC T6	ATEX, IECEx II G Ex ia IIC T4T6 Ga II 1 D Ex ia IIIC T1150C Da	×

*Options of lengths: 1m, 5m and 10m

PULSER MODULE OPTIONS

Macnaught offer a range of Pulser modules to suit a wide variety of industrial flow metering needs. Incorporating Reed and NPN Open Collector switching technology and locking mechanism to facilitate simple integration into any logging and control system.

.....

	DIN COMPACT		INDUSTRIAL P	ULSER CAP	
Output		Pulser		Pulser	
Cable connection		(M12) DIN socket		M20 or ½" NPT	
Switch Type		Reed/Hall Effect Dual Reed Switch Dual Hall Effect		Reed/Hall Effect Dual Reed Switch	
Construction	PP (polypropylene)		Aluminium or Stainless Steel		
IP rating	IP67		IP67	,	
Max temp	120°C (248°F)		120°C (24	48°F)	
Part number	Hall/Hall Switch MXD-HH	Reed/Reed Switch MXD-RR	Reed/Hall Switch MXD-RH	Aluminium MXD-ACM-1 (Reed/Hall) MXD-ACM-2 (Reed/Reed) MXD-ACN-1 (Reed/Hall) MXD-ACN-2 (Reed/Reed)	Stainless Steel MXD-SCM-1 (Reed/Hall)

PR DIGITAL DISPLAY SERIES (12MM DIGIT)

The PR Series is a fully programmable 12mm LCD Digital Register displaying Flow Rate, Accumulated (Nonresettable) and Batch (Resettable) Totals. The output options available include 4-20mA output, scaled pulse output and a Hi/Lo Flow Alarm. Rated at IP67, the UV resistant glass reinforced polypropylene housing makes the PR Series suitable for both indoor and outdoor use in light-medium duty industrial applications. The PR display is also available in both Meter Mount and Remote Mount version

METER MOUNT	TYPE D - PR DISPLAY	TYPE E – PRA DISPLAY
Description	Liquid Crystal Display	Liquid Crystal Display with outputs
Construction	PP (polypropylene)	PP (polypropylene)
Wall mount option	PR-WM	PRA-WM
IP rating	IP67	IP67
Max temp	60°C (140°F)	60°C (140°F)
Display Digit size (upper/lower) Accumulated total Resettable total Preset total Flow rate	12mm/8mm	12mm/8mm
Outputs 4-20 mA (passive) Pulse/Transistor Output Flow Alarm Batch Control output	× × × ×	✓ ✓ ✓ ×

DR DIGITAL DISPLAY SERIES (12MM DIGIT)

METER MOUNT	DR	DRA
Description	Reflective, UV resistant numeric and alphanumeric LCD	Reflective, UV resistant numeric and alphanumeric LCD
Construction	Aluminium exterior with polycarbonate windows	Aluminium exterior with polycarbonate windows
Wall mount option	DR-WM	DRA-WM
IP rating	IP67	IP67
Max temp	60°C (140°F)	60°C (140°F)
Display Digit size (upper/lower) Accumulated total Resettable total Preset total Flow rate	12mm/8mm	12mm/8mm
Outputs 4-20 mA (passive) Pulse/Transistor Output Flow Alarm Batch Control output	× × × ×	× × ×

ACCESSORIES

ER DIGITAL DISPLAY SERIES (17MM DIGIT)

The ER Series is a fully programmable 17mm LCD Digital Register displaying Flow Rate, Accumulated (Nonresettable) and Batch (Resettable) Totals. The output options available include 4-20mA and scaled pulse output. Rated at IP67, the robust Aluminium housing makes the ER Series suitable for both indoor and outdoor use in heavy duty industrial applications. The ER display is also available in both Meter Mount (Aluminium) and Remote Mount (Aluminium or plastic) versions.

METER MOUNT	TYPE F ER DISPLAY	TYPE G ERA DISPLAY	TYPE H ERB DISPLAY
Description	Liquid Crystal Display	Liquid Crystal Display with outputs	Single stage Batch Controller
Construction	Aluminium	Aluminium	Aluminium
IP rating	IP67	IP67	IP67
Max temp	120°C (248°F)	80°C (176°F)	80°C (176°F)
Display Digit size (upper/lower) Accumulated total Resettable total Preset total Flow rate	17mm/8mm	17mm/8mm	17mm/8mm
Outputs 4-20 mA (passive) Pulse/Transistor Output Flow Alarm Batch Control output	× × × ×	✓ ✓ × ×	× × ×

REMOTE MOUNT	ER-RMP ER-RMA	ERA-RMP ERA-RMA	ERB-RMP ERB-RMA
Description	Liquid Crystal Display	Liquid Crystal Display with outputs	Single stage Batch Controller
Construction	Aluminium or GRP (plastic)	Aluminium or GRP (plastic)	Aluminium or GRP (plastic)
IP rating	IP67	IP67	IP67
Mounting	Wall mount	Wall mount	Wall mount
Display Digit size (upper/lower) Accumulated total Resettable total Preset total Flow rate	117mm/8mm	117mm/8mm	17mm/8mm
Outputs 4-20 mA (passive) Pulse/Transistor Output Mechanical relay output Flow Alarm Batch Control output	× × × × ×	✓ ✓ × × ×	× × × ×
Ex approved part numbers	ERX-RMA (Aluminium) ERX-RMP (Plastic)	ERAX-RMA (Aluminium) ERAX-RMP (Plastic)	ERBX-RMA (Aluminium) ERBX-RMP (Plastic)

ER DIGITAL DISPLAY SERIES (17MM DIGIT)

.....

REMOTE MOUNT	ERB-PM	ERS-RMP ERS-RMA
Description	Two stage Batch Controller	Differential Flow Computer
Construction	Aluminium front panel	Aluminium or GRP (plastic)
IP rating	IP67 (NEMA 4X)	IP67 (NEMA 4X)
Mounting	DIN panel mount	Wall mount
Display Digit size (upper/lower) Accumulated total Resettable total Preset total Flow rate	17mm/8mm	17mm/8mm
Outputs 4-20 mA (passive) Pulse/Transistor Output Mechanical relay output Flow Alarm Batch Control output	× ~ ~ ~	✓ ✓ × × ×

ACCESSORIES

AIR ELIMINATOR & STRAINER

DESCRIPTION

- Aluminium body
- SS 316 basket
- Viton[®] Seals
- Mesh size: 100 Mesh (150µ)
- Air eliminators are available in 3 sizes:
- 2": Part Number BSA050
- 3": Part Number BSA075
- 4": Part Number BSA100

Y TYPE STRAINER

DESCRIPTION

- Body: CF8M
- Screen: SS316
- Working press: 800 psi/PN40
- Y-type strainers are available in 4 sizes:
 - » **¼" 200 mesh (74μ)**: Part Number YS800-01 (BSP) YS800-02 (NPT)
 - » 1⁄2" 60 mesh (250µ): Part Number YS012-01 (BSP)YS012-02 (NPT)
 - » **1" 60 mesh (250µ)**: Part Number YS025-01 (BSP)YS025-02 (NPT)
 - » 11/2" 60 mesh (250µ): Part Number YS040-01 (BSP)YS040-01 (NPT)

WALL MOUNT BRACKET

DESCRIPTION

- Aluminium wall mount bracket to suit models MX06-25
 - » Suitable for MX06: Part Number MXA-06-WM
 - » Suitable for MX09: Part Number MXA-09-WM
 - » Suitable for MX12: Part Number MXA-12-WM
 - » Suitable for MX19-25: Part Number MXA-25-WM

SIGNAL CABLE

DESCRIPTION

- The Sensor Cable is a M12 5 position female connector cable, to supplement the DIN Pulser Module
- Manufactured form polyurethane, the sensor cable is highly resistant to acids, alkaline solutions, solvents and salt water
- The Sensor cable is available in 4 options:
 - » 1.5 meters (right angle): Part Number MXD-C1.5
 - » 5 meters (right angle): Part Number MXD-C5
 - » 10 meters (right angle): Part Number MXD-C10
 - » 1.5 meters (straight): Part Number MXD-C1-5S

Please note: The Sensor cable should be ordered separate to the DIN Pulser Module.

FIELD ATTACHABLE CONNECTOR

DESCRIPTION

- The Field Attachable Connector is a M12, right angled female connector, to complement the DIN Pulser Module.
- The connector offers flexible on-site assembly via its 5 position, screw connection facility
- Part Number MXD-CF

ACCESSORIES

DIGITAL FLOW METER EXTENSION ADAPTORS

Macnaught Digital Flow Meter Extensions Adaptors are manufactured from Stainless Steel 316 are suitable for upgrading M-SERIES Flow Meters* (early models) to MX SERIES Flow Meters. Since end-to-end length of MX Series flow meters are smaller than M-Series flow meters, these extension adaptors allow for users to compensate the extra length and will adjust perfectly in existing pipework.

Macnaught offers these extension adaptors free of charge on request with every purchase of a MX meter.

SPECIFICATIONS

	MX12	MX19	MX25	MX40	MX50
Part Number Telfon Seals Viton Seals	MX12A-TE MX12A-V	MX19A-TE MX19A-V	MX25AA-TE MX25AS-TE MX25AA-V	MX40A-TE MX40A-V	MX50A-TE MX50A-V
Size	1/2"	3/4"	1"	1 1/2"	2"
Suits models	MX12	MX19	MX25	MX40	MX50

DIMENSIONS

*Applicable only for flow meters from 1/2" to 2" with BSP threaded connections.

DIMENSIONS

P/N: MX40A-V suitable for MX40F MX40A-TE suitable for MX40P or S

FLOW METER ACCURACY & PRESSURE LOSSES

.....

.....

FLOW METER ACCURACY & PRESSURE LOSSES

ACCESSORY DIMENSIONAL DATA

MX-Series Flange Dimension Data

.....

MX100

METER SIZE	PORT SIZE	FLANGE TYPE	LENGTH A (mm)	LENGTH A (in)
		ANSI	436	17.165
		DIN	436	17.165
MX75 ALUMINIUM	3"	JIS	436	17.165
		G	302	11.890
		NPT	302	11.890
		ANSI	583	22.952
	4"	DIN	583	22.952
MX100 ALUMINIUM		JIS	583	22.952
	0.11	G	302	11.890
	3"	NPT	302	11.890

ACCESSORY DIMENSIONAL DATA

M-Series Flange Dimension Data

.....

ANSI/DIN/JIS

G/NPT

METER SIZE	PORT SIZE	FLANGE TYPE	LENGTH A (mm)	LENGTH A (in)
E040		ANSI	270	10.630
S040 M040	1 1/2"	DIN	262	10.315
101040		JIS	266	10.472
		G	302	11.890
		NPT	302	11.890
	3"	ANSI	436	17.165
		DIN	436	17.165
F100		JIS	436	17.165
S100		G	302	11.890
		NPT	302	11.890
	4"	ANSI	583	22.952
		DIN	583	22.952
		JIS	583	22.952

APPENDIX B

ACCESSORY DIMENSIONAL DATA

Air Eliminator Dimension Data

.....

Dimensions (mm)

METER SIZE	FLANGE TYPE	Α	В	С	D	E	F	G	Н
	G	43	278	317	137	280	296	170	151
F050 S050	NPT	43	278	317	137	280	296	170	151
	ANSI	110	278	317	137	280	362	273	151
	G	43	279	410	141	290	383	172	151
F075 S075	NPT	43	279	410	141	290	383	172	151
	ANSI	110	279	410	141	290	450	239	151
	G	43	279	410	141	290	384	172	151
F100	NPT	43	279	410	141	290	384	172	151
S100	ANSI 3"	110	279	410	141	290	451	239	151
	ANSI 4"	181	279	410	141	290	522	310	151

Dimensions (in)

METER SIZE	FLANGE TYPE	Α	В	С	D	E	F	G	Н
	G	1.693	10.945	12.480	5.394	11.024	11.653	6.693	5.945
F050 S050	NPT	1.693	10.945	12.480	5.394	11.024	11.653	6.693	5.945
	ANSI	4.330	10.945	12.480	5.394	11.024	14.252	10.748	5.945
	G	1.693	10.984	16.142	5.551	11.417	15.079	10.709	5.945
F075 S075	NPT	1.693	10.984	16.142	5.551	11.417	15.079	10.709	5.945
	ANSI	4.330	10.984	16.142	5.551	11.417	17.717	9.409	5.945
	G	1.693	10.984	16.142	5.551	11.417	15.118	10.709	5.945
F100	NPT	1.693	10.984	16.142	5.551	11.417	15.118	10.709	5.945
S100	ANSI 3"	4.330	10.984	16.142	5.551	11.417	17.756	9.409	5.945
	ANSI 4"	7.126	10.984	16.142	5.551	11.417	20.551	12.205	5.945

APPENDIX C

VISCOSITY FACTOR

To achieve the lowest possible pressure drop, a range of special cut high viscosity optional rotors is available for the MX09/M2, MX12/M4, MX19/M7, MX25/M10, MX40/M40 & MX50/M50 meter models.

The MX and M-SERIES[™] range of oval gear type Positive Displacement Flow Meters has a distinct advantage in measuring extremely viscous materials with the pressure drop being the only limiting factor.

With fluids above 1000cP, meter sizing and required flow rate become important decisions.

For example:

With SAE90 gear oil @ 20°C/68°F with a viscosity of 1000cP, the maximum pressure drop of an M10 at its maximum flow rate (120lpm/32USGM) would be 100kPa/14.5psi/1BAR. However, the pressure drop with the M40 or M50 meters, at the same flow rate would be

M40: Max 50kPa/7.2psi/0.5BAR M50: Max 35kPa/5.0psi/0.35BAR

To approximately determine the expected maximum flow rate for different high fluid viscosities for each M-SERIES[™]model at a 100kPa/14.5psi/1BAR pressure drop using high viscosity rotors, the following coefficient factors are applied and Macnaught has created the table at the bottom of this page as a guide:

COE	FFICIENT	MX0	9/M2	MX1	2/M4	MX1	9/M7	MX25	5/M10	MX40)/M40	MX50	/M50
VIS F	SCOSITY ACTOR	L/Hr	GPH	L/min	GPM	L/min	GPM	L/min	GPM	L/min	GPM	L/min	GPM
1	<2500cP	500	132.09	30	7.93	80	21	120	31.70	250	66.04	350	92.5
0.9	<3000cP	450	118.88	27	7.13	72	19	108	28.53	225	59.44	324	86
0.8	<4000cP	400	105.67	24	6.34	64	17	96	25.36	200	52.83	280	74
0.7	<5000cP	350	92.46	21	5.55	48	13	84	22.19	175	46.23	245	65
0.6	<8000cP	300	79.25	18	4.76	40	11	72	19.02	150	39.63	210	56
0.5	<12000cP	250	66.04	15	3.96	24	6.3	60	15.85	125	33.02	175	46
0.4	<25000cP	200	52.83	12	3.17	16	4.2	48	12.68	100	26.42	140	37
0.3	<40000cP	150	39.63	9	2.38	8	2.1	36	9.51	75	19.81	105	28
0.2	<95000cP	100	26.42	6	1.59	4	1.06	24	6.34	50	13.21	70	18.5
0.1	<450000cP	50	13.21	3	0.79	-	-	12	3.17	25	6.60	35	9.25
0.05	<100000cP	25	6.60	1.5	0.40	-	-	6	1.59	12.5	3.30	17.5	4.6

WARRANTIES & CERTIFICATIONS

EU DECLARATION OF CONFORMITY

All Macnaught flow meters are designed & manufactured under the guidelines of Directive 2014/68/EU covering Pressure Equipment placed into the EU marketplace. These meters have been assessed to fall within the classification of 'Piping' and comply with Article 4(1)(c)(ii) Table 8 or 9 depending on fluid group 1 or 2 respectively. All meters comply with Article 4, paragraph 3 Sound Engineering Practice and shall be accompanied by adequate instructions for use. In all cases the flow meters EU Declaration of conformity shall be taken as the controlling document that outlines any restrictions on pressure ratings. It is important to always check this document before ordering a meter since it will be updated in line with any changes to the directives

INTRINSICALLY SAFE APPROVAL

For current list of all intrinsically safe approval certificates, Please refer to Macnaught.com.au/approvals

FLANGE TECHNICAL INFORMATION

Macnaught meter flanges are sized to flange requirements in the ASME B31.3 Code of Pressure Piping at the stated meter flange's rated pressure (this may differ from the meter's rated pressure); the sizing is based on the meter material properties taken at ambient temperature. Gasket factors used for stainless steel flanges to develop adequate installation and operation gasket seating force are:

Raised face type flange 'm' = 5 and 'y' = 15 MPa requiring bolts of grade ASTM A193-B7.

Flat face type flange 'm' = 1 and 'y' = 1.4 MPa, typical of soft rubber or neoprene, requiring bolts of grade ASTM A193-B7.

The use of gaskets with factors larger than those stated above for the respective flange face types is the responsibility of the end user/installer. For materials other than stainless steel offered in the Macnaught meter range please consult the Macnaught web site for current technical data on flange size, material specification, and pressure rating.

FLOW METER TEST REPORT

Nominal K-Factor - Mechanical

Each meter is checked for accuracy after being manufactured. The process is to enter the nominal "K Factor" for that meter and to verify using a one point calibration at the mid range of flow rate of the meter against an approved master meter. Macnaught standard test is at one point, additional points can be done on request and would incur additional costs.

Specific K-Factor - All other meters

A specific K-Factor is calculated by measuring the actual pulses relative to the approved master meter.

A certificate as illustrated below is included in the documentation package with the meter. Master meters have their accuracy checked and proving certificates are issued by the National Measurement Institute, on regular basis.

Relazione della Metroligia di Co Informe de Metroligia de Calibi	ilibrazione ración	Rapport N Relatório a	létrologique le Metroligio	d'étalonna de Calibra	ge Be gem	richt der Kalibrierungs	-Messkunde			
Report No.		Relazione No.	Rapport No.	Informe No. I	lericht Nr. A	lelatório Nº	508512			
Model		Madello	Modèle i	Modelo A	fodel N	lodelo	MX25P-1SX			
Serial No.		N. de Serie	No. de Série I	No. de Senie	Senien Nr. 🛛	N? de Série	C508512			
Test Media		Mezzo di Collas	do Méthode	de Preuve I	Aedio para la	Prueba Testmedien	Método da Prava			
Indef Arthonoga 4 An augimer an expension Land (20) Indef Arthonoga 4 An augimer and Arthonoga A										
Test Results	Risultati Collànaz	ione A	isultats d'étalon	nage K	albrierungsne	suitete	Litres per Minute			
Test No.	1	2	3	4	5	Collaudo Pruet	ba Prava			
Flow Rate	30.0	60.0	90.0			Velocitá del Flusso Toux	de Débit Velocidad de Flujo			
K-Factor (pulses per Litre or Gallon)	36.21	36.19	36.16			Parchfulimenge som	o do Flano Scient Faktor K			
Test Volume	57.72	113.61	168.06	-		Volume di provo Volume	e d'essal			
Accuracy Of Reading (%)	+/- 0.50	+/- 0.50	+/- 0.50			Precisione Précis Genouigkeit de D	ision Exectitud xectido			
Pressure Drop (kPa)	22	22	22	-		- ΔΡ (Delta P)				
Fluid Temperature (°C)	15.0	15.0	15.0	-		Toratura Liquido Fiu Kolbrierungsfüßigkeit Fluid	ide d'étalonnage - Fluido de calibración lo de Calibragem			
Tested By Date	: Suresh.H : 20/09/16				Signatory Date	:: S. Gavin :: 20/09/2016				
The tests, meas master meter	urements or c s. The master	alibrations c instruments	overed by the used for te	his documer sting meet I	nt have be SO17025 a	en performed by volun nd are traceable to int	metric comparison with ternational standards.			

ALUMINIUM 6061 SERIES

_

C-276

HASTELLOY CARBON

 \checkmark \checkmark \checkmark FKMM

/ITON PTFE

316 STAINLESS STEEL

_

PPS RYTON

~

CHEMICAL COMPATIBILITY GUIDE

DISCLAIMER: This chart is intended to provide general guidance on chemical compatibility and should not be used for product selection. The chart is based on industry data and may not be applicable to your specific applications. Temperature, fluid concentration and other process conditions may affect the material compatibility. If there is uncertainty about the suitability of the material with the process chemical, Macnaught recommends physical testing of the sample material with the chemical. If further assistance is required, Macnaught's Technical Support Team can provide advice to assist with selection.

						IES			Recommended
					6	SER		TEEL	Data not available
					C-27	A 6061		ESS S	Not recommended
				N	ЕГГОУ	INIU	YTON	AINLE	
	FKMIN	PTFE	VITON	CARB	HASTI	ALUM	PPS R	316 SI	
Aluminum Chloride	~	~	-	~	~	~	~	~	Acetaldehyde
Aluminum Fluc	~	~	~	~	~	~	_	~	Acetamide
Aluminum Hydro	_	~	_	~	~	~	_	~	Acetate Solvent
Aluminum Nit	_	~	~	~	~	~	_	_	Acetic Acid
Aluminum Potass Sulfate	~	~	~	~	~	~	~	~	Acetic Acid 20%
Aluminum Su	_	~	~	~	~	~	_	_	Acetic Acid 80%
A	~	~	_	~	~	~	~	_	Acetic Acid, Glacial
Am	~	~	_	~	~	~	~	~	Acetic Anhydride
Ammonia	_	~	×	~	~	~	~	~	Acetone
Ammonia Nit	~	~	~	~	~	_	_	~	Acetyl Chloride (dry)
Ammonia, anhyd	~	~	~	~	~	~	~	~	Acetylene
Ammonia, li	~	~	_	~	_	~	_	~	Acrylonitrile
Ammonium Ace	~	~	~	~	~	~	_	~	Adipic Acid
Ammonium Bifluc	_	~	~	_	_	~	_	~	Alcohols: Amyl
Ammonium Carbo	_	~	~	_	_	~	_	~	Alcohols: Benzyl
Ammonium Chlo	_	~	~	_	_	~	_	~	Alcohols: Butyl
Ammonium Hydro	_	~	_	_	_	~	_	~	Alcohols: Diacetone
Ammonium Nit	_	~	~	_	_	~	_	~	Alcohols: Ethyl
Ammonium Oxa	_	~	_	_	_	~	_	~	Alcohols: Hexyl
Ammonium Persu	_	~	~	_	_	~	_	~	Alcohols: Isobutyl
Ammonium Phosph	_	~	~	_	_	~	_	~	Alcohols: Isopropyl
Ammonium Phospi	_	~	_	_	_	~	_	~	Alcohols: Methyl
Monob Ammonium Pho <u>sp</u> l	_	_	~	_	_	~	_	~	Alcohols: Octvl
Trib Ammonium Su	_	~	~	_	_		_		
Ammonium Su				_	_		_		
Animonium Su	•	•			•				Automuti Chioride

APPENDIX E

CHEMICAL COMPATIBILITY GUIDE

						RIES			Recommended
					76	si sei		STEEI	Not recommended
					оҮ С-2	JM 60	N	ILESS	• •
	Z	ш	N	BON	STELL(NINI	куто	STAIN	
	ΠKΝ	PTF	VITO	CAR	HAS	ALU	Sdd	316	
	~	~	-	~	~	~	~	~	Amyl Acetate
Butanol (But	~	~	~	~	~	~	~	~	Amyl Alcohol
	-	~	~	~	~	~	-	~	Amyl Chloride
I	~	~	~	~	-	-	-	~	Aniline
В	-	-	~	-	~	~	~	-	Antifreeze
E	~	~	~	-	-	-	~	-	Aqua Regia (80% HCI, 20% HNO3)
Butyl	~	~	~	-	~	~	-	~	Arochlor 1248
Bu	-	-	~	-	-	~	-	-	Aromatic Hydrocarbons
	~	~	~	~	-	-	-	~	Arsenic Acid
В	~	~	~	~	~	~	~	~	Asphalt
Calciun	-	~	~	~	-	-	-	~	Barium Carbonate
Calciur	~	~	~	~	-	-	~	~	Barium Chloride
Calcium	-	~	~	-	~	-	-	~	Barium Cyanide
Calciur	~	~	~	~	-	-	~	~	Barium Hydroxide
Calcium	_	~	~	~	-	~	-	~	Barium Nitrate
Calci	~	~	~	~	~	~	~	~	Barium Sulfate
Calc	~	~	~	~	-	-	-	~	Barium Sulfide
Calciu	~	~	~	~	~	~	-	~	Beer
	~	~	~	~	~	~	-	~	Beet Sugar Liquids
(~	~	-	~	~	~	-	~	Benzaldehyde
Carbolic Aci	~	~	~	~	-	~	-	~	Benzene
Carbor	~	~	~	~	-	_	-	~	Benzene Sulfonic Acid
Carbon Die	~	~	~	~	_	~	_	~	Benzoic Acid
Carbon Dic	_	~	~	~	_	~	_	~	Benzol
Carbor	~	~	~	~	_	~	~	~	Borax (Sodium Borate)
Carbon	~	~	~	~	~	×	-	~	Boric Acid
Carbon Tetrachic	~	~	~	~	_	~	~	~	Butadiene

	316 STAINLESS STEEL	PPS RYTON	ALUMINIUM 6061 SERIES	HASTELLOY C-276	CARBON	VITON	PTFE	FKMM	
Butane	~	~	~	~	~	~	~	~	
Butanol (Butyl Alcohol)	~	~	~	-	~	~	~	~	
Butter	-	-	~	~	-	~	~	-	
Buttermilk	~	-	~	~	~	~	~	-	
Butyl Amine	-	-	~	-	~	-	~	~	
Butyl Ether	-	~	~	-	~	-	~	-	
Butyl Phthalate	~	-	~	-	~	-	~	-	
Butylacetate	~	-	~	-	-	×	~	-	
Butylene	~	~	~	~	~	~	~	~	
Butyric Acid	~	-	~	~	~	~	~	-	
Calcium Bisulfide	~	-	-	~	-	~	~	-	
Calcium Bisulfite	~	-	-	-	~	~	~	~	
Calcium Carbonate	~	-	-	-	~	~	~	-	
Calcium Chloride	-	~	×	~	~	~	~	~	
Calcium Hydroxide	~	-	_	~	~	~	~	~	
Calcium Nitrate	-	~	~	_	~	~	~	~	
Calcium Oxide	~	-	_	~	_	~	~	_	
Calcium Sulfate	~	~	_	_	~	~	~	_	
Calgon	~	-	_	_	_	~	_	_	
Cane Juice	~	-	~	_	_	~	~	_	
Carbolic Acid (Phenol)	~	-	~	~	~	~	~	~	
Carbon Bisulfide	~	-	~	_	_	~	_	~	
Carbon Dioxide (dry)	~	~	~	~	~	~	~	~	
Carbon Dioxide (wet)	~	~	~	~	~	~	~	~	
Carbon Disulfide	~	~	~	_	~	~	~	-	
Carbon Monoxide	~	_	~	_	~	~	~	~	
bon Tetrachloride (wet)	~	_	×	_	~	_	~	~	

.....

CHEMICAL COMPATIBILITY GUIDE

~	Recommended Data not available	EEL		ERIES						
×	Not recommended	STAINLESS STR	S RYTON	UMINIUM 6061 S	STELLOY C-276	RBON	NO	H	MM	
		316	ďď	ALI	HA	Q	Ĭ	đ	Ϋ́	
	Carbonated Water	~	~	~	~	~	~	-	~	
	Carbonic Acid	~	~	~	~	~	~	~	~	
	Catsup	~	-	-	~	-	~	-	-	
	Chlorine (dry)	~	-	-	~	~	~	~	~	
	Chloroacetic Acid	~	-	-	~	~	-	~	~	
	Chlorobenzene (Mono)	~	-	~	~	~	~	~	~	
	Chlorobromomethane	-	-	-	-	-	~	~	~	
	Chloroform	~	-	~	~	~	~	~	~	
	Chocolate Syrup	~	-	~	-	-	~	~	-	
	Chromic Acid 10%	~	-	-	-	~	~	~	~	
	Chromic Acid 30%	~	-	_	_	~	~	~	~	
	Chromic Acid 5%	~	_	_	_	~	~	~	~	
	Cider	~	_	~	~	_	~	_	_	
	Citric Acid	~	_	_	~	~	~	~	~	
	Citric Oils	~	_	_	~	_	~	_	_	
	Cloroxr (Bleach)	~	~	×	~	_	~	~	~	
	0.20% Nacio	~	_	~	~	_	~	_	_	
	Copper Chloride	_	~	_	~	_	~	~	~	
	Copper Cvanide	~	_	_	~	~	~	~	~	
	Copper Nitrate		_	_	_	~	~		_	
	Copper Sulfate 5%									
	Copper Sulfate 5%		~		~	~	~		~	
	Cream	×	-	~	-	-	×	~	-	
	Cresols	~	-	~	-	~	~	-	~	
	Cresylic Acid	~	-	~	-	~	~	~	~	
	Cyanic Acid	~	-	-	-	~	~	~	-	
	Cyclohexane	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	

•••	•••••		•••••	•••••			•••••	•••••	•••••	,
	FKMM		316 STAINLESS STEEL	PPS RYTON	ALUMINIUM 6061 SERIES	HASTELLOY C-276	CARBON	VITON	PTFE	FKMM
	~	Cyclohexanone	~	~	~	~	~	-	~	~
	~	Detergents	~	~	~	-	~	~	~	~
	_	Diacetone Alcohol	~	-	~	~	~	-	~	~
	~	Dichlorobenzene	-	-	~	~	~	-	~	-
	~	Dichloroethane	~	-	~	~	~	-	~	-
	~	Diesel Fuel	~	~	~	~	~	~	~	~
	~	Diethyl Ether	~	~	~	~	~	-	~	~
	~	Diethylamine	~	-	~	~	~	~	-	~
	-	Diethylene Glycol	~	-	~	~	~	~	~	~
	~	Dimethyl Aniline	~	-	~	-	~	-	~	~
	~	Dimethyl Formamide	~	~	~	~	-	-	~	~
•	~	Diphenyl	~	-	~	-	-	~	~	-
	_	Diphenyl Oxide	~	-	~	-	-	~	~	~
	~	Dyes	~	-	~	-	-	~	-	-
	_	Epsom Salts (Magnesium Sulfate)	~	-	~	-	~	~	~	-
	~	Ethane	~	~	-	-	~	~	~	~
	-	Ethanol	~	~	~	~	~	~	~	~
	~	Ethanolamine	~	-	~	-	~	-	~	~
	~	Ether	~	-	~	-	~	-	~	-
	-	Ethyl Acetate	~	~	~	~	~	-	~	~
•	~	Ethyl Chloride	~	-	~	-	~	~	~	~
•	~	Ethyl Ether	~	~	~	-	~	-	~	~
•	-	Ethylene Bromide	~	-	~	-	~	~	~	-
	~	Ethylene Chloride	~	-	~	~	~	~	~	~
	~	Ethylene Chlorohydrin	~	-	~	-	~	~	~	-
	-	Ethylene Diamine	~	-	~	-	-	~	~	~
	~	Ethylene Dichloride	~	_	~	_	~	~	~	~

Please refer to disclaimer on page 93

81

APPENDIX E

CHEMICAL COMPATIBILITY GUIDE

× ×	Recommended Data not available Not recommended	316 STAINLESS STEEL	PPS RYTON	ALUMINIUM 6061 SERIES	HASTELLOY C-276	CARBON	VITON	PTFE	FKMM
	Ethylene Glycol	~	~	~	~	~	~	~	~
	Ethylene Oxide	~	-	-	~	~	-	~	~
	Fatty Acids	~	-	~	~	~	~	~	~
	Ferric Chloride	-	~	-	-	~	~	~	~
	Ferric Nitrate	~	-	-	-	~	~	~	~
	Ferric Sulfate	~	-	-	-	-	~	~	~
	Ferrous Chloride	-	~	-	-	~	~	~	-
	Ferrous Sulfate	~	-	~	-	~	~	~	-
	Fluoboric Acid	~	_	_	~	~	~	~	~
	Fluorine	_	_	~	_	_	_	_	~
	Fluosilicic Acid	_	~	_	_	~	~	~	~
	Formaldehyde 100%	_	~	~	~	-	_	~	~
	Formaldehyde 40%	~	~	~	~	~	~	~	~
	Formic Acid	~	~	~	~	~	_	~	~
	Freon 12	~	_	~	~	_	~	~	_
	Freon 22	~	_	_	~	-	_	~	-
	Freon TF	~	_	_	~	_	~	~	_
	Freon 11	~	_	_	~	_	~	~	_
	Fruit Juice	~	_	~	~	_	~	~	_
	Fuel Oils	~	~	_	~	~	~	~	~
	Furan Resin	~	~	~	_	_	_	~	~
	Furfural	~	~	~	_	~	_	~	~
	Gallic Acid	~	_	_	_	_	~	~	~
G	asoline (high-aromatic)	~	~	_	~	~	~	~	~
	Gasoline leaded ref								
	Gasoline unloaded								
	Galatin		-						
	Goladii	•		•	•	•	•	•	•

	•••••		•••••	•••••	•••••	•••••	•••••	•••••
	316 STAINLESS STEEL	PPS RYTON	ALUMINIUM 6061 SERIES	HASTELLOY C-276	CARBON	VITON	PTFE	FKMM
Glucose	~	-	~	~	~	~	~	~
Glue, P.V.A.	~	-	~	~	~	~	~	~
Glycerin	~	-	~	~	~	~	~	~
Glycolic Acid	~	~	-	~	~	~	~	-
Gold Monocyanide	~	-	-	-	-	~	-	-
Grape Juice	~	-	-	-	-	~	~	-
Grease	-	-	-	~	~	~	~	~
Heptane	~	~	~	~	~	~	~	-
Hexane	~	~	~	~	~	~	~	~
Honey	~	-	~	~	-	~	~	-
Hydraulic Oil (Petro)	~	~	~	~	-	~	~	~
Hydraulic Oil (Synthetic)	~	~	~	~	-	~	~	~
Hydrazine	~	-	-	-	-	~	~	~
Hydrocyanic Acid	~	-	~	~	~	~	~	~
Hydrofluoric Acid 100%	~	×	×	-	-	~	~	~
Hydrogen Gas	~	~	~	~	~	~	~	~
Hydrogen Peroxide 5%	~	~	~	~	-	~	~	~
Hydrogen Peroxide 30%	~	-	~	~	-	~	~	~
Hydrogen Peroxide 50%	~	×	~	~	-	~	~	~
Hydrogen Peroxide 100%	~	×	~	~	×	~	~	~
Hydrogen Sulfide (aqua)	-	~	~	~	~	-	~	~
Hydrogen Sulfide (dry)	-	~	~	~	~	-	~	~
Hydroquinone	~	-	~	-	~	~	~	~
lodine	-	-	~	~	-	~	~	~
lodine (in alcohol)	-	-	~	-	-	-	-	~
lodoform	~	-	-	-	-	-	-	~
Isooctane	~	-	~	~	~	~	~	~

Please refer to disclaimer on page 93

APPENDICES

.....

CHEMICAL COMPATIBILITY GUIDE

 Recommended Data not available Not recommended 	316 STAINLESS STEEL	PPS RYTON	ALUMINIUM 6061 SERIES	HASTELLOY C-276	CARBON	VITON	PTFE	FKMM	
Isopropyl Acetate	-	-	-	-	~	-	~	~	
Isopropyl Ether	~	-	~	~	~	-	~	~	
Jet Fuel (JP3, JP4, JP5)	~	~	~	~	~	~	~	-	
Kerosene	~	~	~	-	~	~	~	~	
Ketones	~	-	~	~	~	×	~	-	
Lacquer Thinners	~	-	~	~	~	×	~	~	
Lacquers	~	-	~	~	~	×	~	~	
Lactic Acid	~	~	~	-	~	~	~	~	
Lard	~	-	~	~	~	~	~	~	
Latex	~	-	~	~	-	~	~	-	Metha
Lead Acetate	~	-	-	-	~	-	~	~	
Lead Nitrate	~	-	-	-	~	~	~	~	
Lime	~	_	~	~	~	~	~	~	
Linoleic Acid	~	-	~	~	~	~	~	~	
Lithium Chloride	~	-	-	_	~	~	~	_	
Lithium Hydroxide	~	_	-	_	-	_	~	_	
Lubricants	~	~	~	~	~	~	~	~	
Lye: Ca(OH)2 Calcium Hydroxide	~	_	_	~	~	~	~	~	
Lye: KOH Potassium Hydroxide	~	_	_	_	_	~	~	~	
Lye: NaOH Sodium Hydroxide	~	_	_	_	_	~	~	~	Ме
Magnesium Bisulfate	~	_	_	_	~	_	~	_	Met
Magnesium Carbonate	~	_	~	_	_	~	~	_	
Magnesium Chloride	_	~	_	~	~	~	~	~	
Magnesium Hydroxide	~	~	_	~	~	~	~	~	
Magnesium Nitrate	~	_	~	~	_	~	~	_	
Magnesium Oxide	~	_	~	~	_	_	~	_	
Magnesium Sulfate (Epsom Salts)	~	-	~	-	~	~	~	~	

	316 STAINLESS STEEL	PPS RYTON	ALUMINIUM 6061 SERIES	HASTELLOY C-276	CARBON	VITON	PTFE	FKMM
Maleic Acid	~	-	~	-	~	~	~	~
Maleic Anhydride	~	-	~	~	-	~	~	~
Malic Acid	~	-	~	-	-	~	~	~
Manganese Sulfate	~	-	~	~	~	~	~	-
Mash	~	-	~	~	-	~	-	-
Mayonnaise	-	-	~	~	-	~	~	-
Mercurous Nitrate	~	-	-	~	-	~	~	-
Mercury	~	-	-	~	-	~	~	~
Methane	~	~	~	~	-	~	~	~
lethanol (Methyl Alcohol)	~	~	~	~	~	×	~	~
Methyl Acetate	~	-	~	~	~	-	~	~
Methyl Acetone	~	-	~	-	~	-	~	-
Methyl Acrylate	~	~	-	-	-	-	-	~
Methyl Alcohol 10%	~	~	~	~	~	-	~	~
Methyl Bromide	~	-	-	-	~	~	~	~
Methyl Butyl Ketone	~	-	-	-	-	-	-	~
Methyl Cellosolve	~	-	~	-	~	-	~	~
Methyl Chloride	~	-	-	-	~	~	~	~
Methyl Ethyl Ketone	~	~	~	~	~	×	~	~
Methyl Isobutyl Ketone	~	~	~	~	~	-	~	~
Methyl Isopropyl Ketone	~	-	~	-	~	-	~	-
Methyl Methacrylate	~	~	-	-	-	-	-	~
Methylamine	~	-	~	-	~	-	~	-
Methylene Chloride	~	-	-	-	~	~	~	~
Milk	~	-	~	~	~	~	~	~
Mineral Spirits	~	-	~	-	~	~	~	-
Molasses	~	-	~	~	~	~	~	-

Please refer to disclaimer on page 93

APPENDICES

APPENDIX E

CHEMICAL COMPATIBILITY GUIDE

 Recommended Data not available Not recommended 	316 STAINLESS STEEL	PPS RYTON	ALUMINIUM 6061 SERIES	HASTELLOY C-276	CARBON	VITON	PTFE	FKMM		316 STAINLESS STEEL	PPS RYTON	ALUMINIUM 6061 SERIES	HASTELLOY C-276	CARBON	VITON	PTFE	FKMM
Monochloroacetic acid	~	-	-	~	-	-	~	-	Oils: Creosote	~	-	~	-	-	~	~	-
Monoethanolamine	~	-	~	-	~	-	~	~	Oils: Diesel Fuel (20, 30, 40, 50)	~	-	~	-	~	~	~	-
Morpholine	-	-	~	~	~	-	~	-	Oils: Fuel (1, 2, 3, 5A, 5B, 6)	~	-	-	-	~	~	~	-
Motor oil	~	~	~	~	~	-	~	~	Oils: Hydraulic Oil (Petro)	~	-	~	-	~	~	~	-
Mustard	~	-	~	~	~	-	~	-	Oils: Hydraulic Oil (Synthetic)	~	-	~	-	~	~	~	-
Naphtha	~	~	~	-	~	~	~	~	Oils: Lemon	~	-	~	-	-	~	~	-
Naphthalene	~	-	~	~	~	~	~	~	Oils: Linseed	~	-	~	-	-	~	~	-
Natural Gas	~	-	~	~	-	~	~	~	Oils: Mineral	~	-	~	-	~	~	~	-
Nickel Nitrate	~	-	-	-	-	~	~	-	Oils: Olive	~	-	~	-	~	~	~	~
Nickel Sulfate	~	-	-	-	~	~	~	~	Oils: Orange	~	-	~	-	-	~	-	-
Nitric Acid (5-10%)	~	-	×	~	~	~	~	~	Oils: Palm		-	-	-	-	~	~	-
Nitric Acid (20%)	~	×	×	~	~	~	~	~	Oils: Peanut	~	-	~	-	-	~	~	-
Nitric Acid (50%)	~	×	×	-	-	~	~	~	Oils: Peppermint	~	-	-	-	-	~	~	-
Nitric Acid (Concentrated)	~	×	×	-	-	~	~	~	Oils: Pine	~	-	~	-	-	~	~	-
Nitrobenzene	~	-	~	-	-	~	~	~	Oils: Rapeseed	~	-	-	-	-	~	~	-
Nitromethane	~	-	~	~	~	-	~	~	Oils: Rosin	~	-	~	-	-	~	~	-
Nitrous Acid	~	-	-	-	-	~	~	-	Oils: Sesame Seed	~	-	-	-	-	~	~	-
Nitrous Oxide	~	-	~	-	-	~	~	-	Oils: Silicone	~	-	~	-	-	~	~	-
Oils: Aniline	~	-	-	-	-	-	~	-	Oils: Soybean	~	-	~	-	-	~	~	-
Oils: Castor	~	-	~	-	-	~	~	-	Oils: Sperm (whale)	~	-	-	-	-	~	~	-
Oils: Cinnamon	~	-	-	-	-	~	~	-	Oils: Tanning	~	-	-	-	-	~	-	-
Oils: Citric	~	-	~	-	-	~	~	-	Oils: Transformer	~	-	~	-	~	~	~	-
Oils: Clove	~	-	~	-	-	~	~	-	Oils: Turbine	~	-	~	-	~	~	~	-
Oils: Coconut	~	-	~	-	-	~	~	-	Oleic Acid	~	-	~	~	~	~	~	-
Oils: Cod Liver	~	-	~	-	-	~	~	-	Oleum 100%	~	-	~	-	-	~	~	-
Oils: Corn	~	-	~	-	-	~	~	-	Oleum 25%	~	-	~	~	-	~	~	-
Oils: Cottonseed	~	-	~	-	-	~	~	-	Oxalic Acid (cold)	~	-	~	-	-	~	~	~

.....

.....

CHEMICAL COMPATIBILITY GUIDE

 Recommended Data not available Not recommended 	316 STAINLESS STEEL	PPS RYTON	ALUMINIUM 6061 SERIES	HASTELLOY C-276	CARBON	VITON	PTFE	FKMM		316 STAINLESS STEEL	PPS RYTON	ALUMINIUM 6061 SERIES	HASTELLOY C-276	CARBON	VITON	PTFE	FKMM
Ozone	~	-	~	-	-	~	~	~	Plating Solutions (Cadmium): Fluoborate Bath 100°F	~	-	~	-	-	~	~	~
Palmitic Acid	~	-	~	-	~	~	~	~	Plating Solutions, (Chromium): Black Chrome Bath 115°F	-	-	~	-	-	-	~	~
Paraffin	~	-	~	-	~	~	~	-	Plating Solutions, (Chromium): Chromic-Sulfuric Bath 130°F	-	-	~	-	-	-	~	~
Pentane	-	-	~	-	-	~	~	-	Plating Solutions, (Chromium): Fluoride Bath 130°F	-	-	~	-	-	-	~	~
Perchloroethylene	~	-	-	-	~	~	~	~	Plating Solutions, (Chromium): Fluosilicate Bath 95°F	-	-	~	-	-	-	~	~
Petrolatum	~	-	-	~	~	~	-	-	Plating Solutions (Copper) (Acid): Copper Fluoborate Bath 120°F	~	-	~	-	-	~	~	~
Petroleum	~	-	-	-	~	~	~	~	Plating Solutions (Copper) (Acid): Copper Sulfate Bath R.T.	-	-	~	_	-	~	~	~
Phenol (10%)	~	-	~	-	~	~	~	~	Plating Solutions (Copper) (Cyanide): High-Speed Bath 180°F	-	-	~	-	-	~	~	~
Phenol (Carbolic Acid)	~	-	~	~	~	~	~	~	Plating Solutions (Copper) (Cyanide): Rochelle Salt Bath 150°F	-	-	~	-	-	~	~	~
Phosphoric Acid (>40%)	×	~	×	~	-	~	~	~	Plating Solutions (Copper) (Misc): Copper (Electroless)		-	~	_	-	~	~	~
Phosphoric Acid (crude)	-	~	×	-	-	~	~	~	Plating Solutions (Copper) (Misc): Copper Pyrophosphate		-	~	-	-	~	~	~
Phosphoric Acid (<40%)	-	~	×	~	~	~	~	~	Potash (Potassium Carbonate)	~	-	-	-	~	~	_	-
Phosphorus	~	-	~	~	-	-	~	_	Potassium Bicarbonate	~	-	-	_	~	~	~	-
Phosphorus Trichloride	~	~	-	~	~	~	~	~	Potassium Bromide	~	-	-	-	~	~	~	-
Photographic Developer	~	-	-	-	~	~	~	-	Potassium Chlorate	~	-	~	-	~	~	~	-
Photographic Solutions	-	-	-	-	~	~	~	_	Potassium Chloride	-	~	×	~	~	~	~	~
Phthalic Acid	~	-	~	-	~	~	~	-	Potassium Chromate	~	-	~	~	~	~	~	-
Phthalic Anhydride	~	-	~	~	~	~	~	_	Potassium Cyanide Solutions	~	-	-	_	~	~	~	~
Picric Acid	~	-	-	-	~	~	~	~	Potassium Dichromate	~	-	~	-	~	~	~	~
Plating Solutions, Antimony Plating 130°F	~	-	~	-	-	~	~	~	Potassium Ferricyanide	~	-	~	-	~	~	~	-
Plating Solutions, Arsenic Plating 110°F	~	-	~	-	-	~	~	~	Potassium Ferrocyanide	~	-	~	-	~	~	~	-
Plating Solutions (Brass): High-Speed Brass Bath 110°F	-	-	~	-	-	~	~	~	Potassium Hydroxide (Caustic Potash)	~	~	×	-	×	~	~	~
Plating Solutions (Brass): Regular Brass Bath 100°F	~	-	~	-	-	~	~	~	Potassium Hypochlorite	-	~	×	~	-	-	~	~
Plating Solutions (Bronze): Cu-Cd Bronze Bath R.T.	~	-	~	-	-	~	~	~	Potassium Iodide	~	-	~	~	~	~	~	-
Plating Solutions (Bronze): Cu-Sn Bronze Bath 160°F	~	-	~	-	-	~	~	~	Potassium Nitrate	~	-	~	-	~	~	~	~
Plating Solutions (Bronze): Cu-Zn Bronze Bath 100°F	~	-	~	-	-	~	~	~	Potassium Oxalate	~	-	~	~	~	-	~	-
Plating Solutions (Cadmium): Cyanide Bath 90°F	-	-	~	-	-	~	~	~	Potassium Permanganate	~	-	~	~	-	~	~	-

APPENDIX E

CHEMICAL COMPATIBILITY GUIDE

 Recommended Data not available Not recommended 	316 STAINLESS STEEL	PPS RYTON	ALUMINIUM 6061 SERIES	HASTELLOY C-276	CARBON	VITON	PTFE	FKMM		316 STAINLESS STEEL	PPS RYTON	ALUMINIUM 6061 SERIES	HASTELLOY C-276	CARBON	VITON	PTFE	FKMM
Potassium Sulfate	~	-	-	-	~	~	~	~	Sodium Carbonate	~	~	-	~	~	~	~	-
Potassium Sulfide	~	-	-	-	~	~	~	-	Sodium Chlorate	~	-	-	-	-	~	~	-
Propane (liquefied)	~	~	~	~	~	~	~	~	Sodium Chloride	~	~	-	~	~	~	~	~
Propylene	~	~	~	-	~	~	~	~	Sodium Chromate	~	-	~	~	~	~	~	-
Propylene Glycol	~	~	~	-	-	~	~	-	Sodium Cyanide	~	~	-	~	~	~	~	~
Pyridine	~	-	~	-	~	-	~	~	Sodium Ferrocyanide	~	-	~	~	~	~	~	-
Pyrogallic Acid	~	-	~	-	~	~	~	-	Sodium Fluoride	-	-	~	~	~	~	~	-
Rosins	~	-	~	-	~	~	~	-	Sodium Hydrosulfite	-	~	~	~	-	~	~	-
Rum	~	-	-	-	-	~	-	-	Sodium Hydroxide (20%)	~	~	×	-	~	-	~	~
Rust Inhibitors	~	-	-	-	-	~	-	-	Sodium Hydroxide (50%)	~	~	×	-	~	×	~	~
Salad Dressings	~	-	~	-	-	~	-	-	Sodium Hydroxide (80%)	-	~	×	-	-	×	~	~
Salicylic Acid	~	-	~	~	~	~	~	~	Sodium Hypochlorite (<20%)	×	-	×	-	~	~	~	~
Salt Brine (NaCl saturated)	~	-	~	~	~	~	~	~	Sodium Hypochlorite (100%)	×	-	×	-	-	~	~	~
Sea Water	~	-	-	~	~	~	~	~	Sodium Hyposulfate	~	-	-	-	-	-	~	-
Shellac (Bleached)	~	-	~	-	~	~	~	-	Sodium Metaphosphate	~	-	-	-	~	~	~	~
Shellac (Orange)	~	-	~	-	~	~	~	-	Sodium Metasilicate	~	-	-	~	-	~	~	-
Silicone	~	-	~	-	~	~	~	-	Sodium Nitrate	~	~	~	-	-	~	~	~
Silver Nitrate	~	-	-	~	~	~	~	~	Sodium Perborate	~	-	-	-	-	~	~	~
Soap Solutions	~	-	-	~	~	~	~	~	Sodium Peroxide	~	-	-	-	~	~	~	~
Soda Ash (see Sodium Carbonate)	~	-	-	-	-	~	~	~	Sodium Polyphosphate	~	-	-	~	~	~	~	-
Sodium Acetate	~	~	~	~	~	-	~	~	Sodium Silicate	~	-	~	-	~	~	~	~
Sodium Aluminate	~	-	-	-	~	~	~	-	Sodium Sulfate	~	~	~	-	~	~	~	~
Sodium Benzoate	-	-	~	~	~	~	~	-	Sodium Sulfide	~	~	-	-	~	~	~	-
Sodium Bicarbonate	~	~	-	-	~	~	~	~	Sodium Sulfite	~	-	-	-	~	~	~	-
Sodium Bisulfate	-	~	-	-	~	~	~	-	Sodium Tetraborate	~	-	-	-	-	~	~	-
Sodium Bisulfite	~	-	-	-	~	~	~	~	Sodium Thiosulfate (hypo)	~	~	~	-	-	~	~	~
Sodium Borate (Borax)	~	-	-	~	~	~	~	~	Sorghum	~	-	-	-	-	~	-	-

.....

.....

CHEMICAL COMPATIBILITY GUIDE

316 STAINLESS STEEL	PPS RYTON	ALUMINIUM 6061 SERIES	HASTELLOY C-276	CARBON	VITON	PTFE	FKMM	
~	-	~	-	_	~	-	~	
~	-	~	-	~	~	~	_	
~	-	~	-	~	~	~	~	
~	~	~	~	~	~	~	~	Tri
~	_	~	_	~	~	~	~	
~	_	~	~	~	~	~	~	
~	_	_	_	~	~	~	_	
_	~	~	_	~	~	~	~	
_	~	~	_	~	~	~	~	
~	_	~	_	_	~	~	~	
_	_	~	_	-	~	~	~	
_	~	_	~	~	~	~	~	
×	~	×	~	~	~	~	~	
×	~	×	~	×	~	~	~	
×	~	×	~	_	~	~	~	
×	~	×	_	×	~	~	~	
~	_	~	_	~	~	~	~	
~	_	~	_	~	~	~	_	
~	_	_	_	~	~	~	~	
~	_	~	_	_	~	~	_	
_	_	~	_	~	~	~	~	
~	_	_	~	~	~	~	_	White
~	~	_	~	~	_	~	~	White
~	-	~	~	~	×	~	~	
~	~	~	_	~	~	~	~	
~	_	-	~	~	~	~	~	
~	-	-	~	~	~	~	~	
		<	<td< td=""><td>> > ></td><td>> > ></td><td>((</td><td>((</td><td>((</td></td<>	> >	> >	((((((

	316 STAINLESS STEEL	PPS RYTON	ALUMINIUM 6061 SERIES	HASTELLOY C-276	CARBON	VITON	PTFE	FKMM
Trichloropropane	~	-	-	~	-	~	~	-
Tricresylphosphate	~	-	-	~	~	~	~	~
Triethylamine	~	-	-	-	~	-	~	~
isodium Phosphate	~	~	-	-	-	~	~	-
Turpentine	~	~	~	-	~	~	~	~
Urea	~	-	~	-	~	~	~	-
Uric Acid	~	-	-	-	~	-	~	-
Urine	~	-	~	-	~	~	~	-
Varnish	~	-	~	~	~	~	~	~
Vegetable Juice	~	~	-	-	-	~	~	~
Vinegar	~	~	-	~	~	~	~	~
Vinyl Acetate	~	-	~	-	~	~	~	-
Vinyl Chloride	~	-	~	~	~	~	~	~
Water, Acid, Mine	~	-	-	~	~	~	~	~
Water, Deionized	~	~	~	~	~	~	~	~
Water, Distilled	~	~	~	~	~	~	~	~
Water, Fresh	~	~	~	~	~	~	~	~
Water, Salt	~	~	~	~	~	~	~	~
Weed Killers	~	-	-	-	-	~	-	-
Whey	~	-	~	-	-	~	~	-
Whiskey & Wines	~	-	-	-	-	~	~	~
te Liquor (Pulp Mill)	~	-	~	~	~	~	~	-
e Water (Paper Mill)	~	-	-	-	-	~	-	-
Xylene	~	-	~	~	~	~	~	~
Zinc Chloride	~	~	-	-	~	~	~	~
Zinc Hydrosulfite	~	-	-	-	-	-	~	-
Zinc Sulfate	~	-	-	~	~	~	~	~

APPENDICES

NOTES

Built to last since 1948.

Macnaught Pty Ltd 614 South Ware BoulevardPh: +1813 628 5506Tampa Florida USA, 33619Email: info@macnaughtusa.com

www.macnaught.com

Macnaught Positive Displacement Flow Meters Product Catalog MP20901_2017